Il tempo della Human Data Science Big Data & AI per l'ottimizazione della governace sanitaria - Luca Pinto - Principal RWI Motore Sanità Milano, 5 ...
←
→
Trascrizione del contenuto della pagina
Se il tuo browser non visualizza correttamente la pagina, ti preghiamo di leggere il contenuto della pagina quaggiù
Il tempo della Human Data Science Big Data & AI per l’ottimizazione della governace sanitaria Luca Pinto – Principal RWI Motore Sanità Milano, 5 Dicembre 2019 Copyright © 2019 IQVIA. All rights reserved.
Per molti anni l’efficienza ha dettato l’agenda del SSN Variazione spesa per Regioni in PdR vs non in PdR Fondo Sanitario Evoluzione 4,0 Agenda Nazionale del deficit 3,0 Perseguire nel 2017 … i Piani di € Mld 2,0 Piani di Rientro 112,6 Rientro hanno aiutato la ridu- 1,0 0,0 Lavorare Iso Mld Euro Risorse zione del deficit -1,0 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 complessivo Riqualificare la CAGR1 = + 0,8% Regioni in PdR Regioni non in PdR Rete Ospedaliera Costi del personale Riqualificazione Attivare un Ospedaliera nel 2017 piano cronicità integrato 34,3 1.159 Ospedali Mld Euro pubblici e privati CAGR1 = - 0,9% Fonte: Rapporto OASI 2016, Il Sole24Ore Sanità, Tavole SDO 2016, L'uso dei farmaci in Italia - Rapporto nazionale 2016, Monitoraggio della spesa sanitaria – Rapporto nazionale anno 2016 (1) Dal 2012 (2) Il divario tra il livello di finanziamento di «Patto per la Salute 2014-2016» e dopo il decreto di cui all'art. 1, co. 394, L'232/2016 è pari a 8,95 MLD di Euro nel 2018 e sarà pari a 10,94 MLD nel 2019 1 This presentation is confidential and must not be used for purposes other than those for which has been drawn up and must not be disclosed, reproduced and/or revealed to third parties without the prior written consent of IQVIA
Il futuro richiede un cambio di paradigma volto al Valore Domanda Costi Offerta Invecchiamento Innovazione Big Data Reti d’offerta Fragilità Aderenza Oncologica & Ematologica Lungo Multifunzionale Sopravvivenza Prevenzione & Multidisciplinare © 2019 | IQVIA, All rights Reserved 2
La dinamica demografica assorbirà risorse crescenti anche associata a crescente cronicità e co-morbidità La mortalità è diminuita in misura significativa anche nel caso di diagnosi di tumore Supravvivenza e cronicità, 2015-2020 [Mln Pazienti] 3,4 3,5 3,3 3,4 3,2 3,0 2,6 Patients [Mln] 2,4 2,5 2,2 2,3 2,3 2015 2016 2017 2018 2019 2020 Cancer survivors Total chronics CANCER SURVIVORS TOTAL CHRONIC PATIENTS Source: AIRTUM - AIFA, Analysis IQVIA This presentation is confidential and must not be used for purposes other than those for which has been drawn up and must not be disclosed, reproduced and/or revealed to third parties without the prior written consent of IQVIA Source: IQVIA © IQVIA 2018. All rights reserved. 3
L’innovazione clinica accelera, a costi crescenti La pipeline in fase avanzata è cresciuta del 60% negli utlimi 10 anni Numero Molecole in Sviluppo Clinico ( 2007-2017) Nuovi Agenti in Sviluppo per Indicazione (2013-2017) Il 2018 è stato record assoluto per numero 2 1 3 di nuove approvazioni di farmaci (59) 4 Head & Breast Renal 5 Neck Bladder Breast 1 6 Neuro- blastoma Melanoma 2 3 Liver Colorectal 1 Lym- Thyroid 9 phoma Castel- 9 Leukimia man’s 1 Lung Ovarian 11 4 Merkel GIST Cell 1 1 Sarcoma Cervical 3 Multiple Basal Cell 1 Myeloma Polycy- Carcinoma Prostate themia 5 Gastric Vera 1 Source: IQVIA Oncology Global Trends 2018; IQVIA Institute April 2018 1 2 1 © 2019 | IQVIA, All rights Reserved 4
Gestione di cronicità e aderenza liberano risorse importanti La gestione del paziente con patologie croniche Prevalenza Trattati* Aderenza Ipertensione 27,6% 67,5% 55,1% Solo il 41% dei 11-12 miliardi, Ipercolesterolemia 7,2% 36,5% 43,1% Ischemia 7,6% 50,0% 77,0% cittadini affetti da il possibile Diabete 5,5% 100,0% 62,1% una patologia è risparmio Asma-BPCO 5,9% 30,5% 14,2% regolarmente in derivante da una Depressione 7,5% 31,0% 38,4% cura maggiore presa in Osteoporosi 5,2% 39,0% 46,3% *In trattamento regolare Il grado di carico e maggiore Fonte: OSMED; *In trattamento regolare aderenza aderenza terapeutica è terapeutica, in media è del 45% termini di minori costi sanitari di Il 60% dei ricadute cittadini non si sente seguito nella gestione della patologia Source: IQVIA Source: IQVIA, 2016, involving more than 700 people >65 years old © IQVIA 2018. All rights reserved. 5
In questo scenario, Big Data e l’AI accellerano l’innovazione di processo Can accelerate the 4.8yrs to diagnosis Artificial Intelligence from onset of symptoms to first diagnosis Any technique that enables computers to of a rare disease mimic human intelligence NLP A subset of Can help find the Machine AI that Learning enables 24% under-treated A subset of AI that enables computers computers to improve at tasks to of diabetics who are undiagnosed with experience understand language and untreated Un/Supervis Neural ed Learning Networks Can help address the 60% non-adherent Deep Learning patients on chronic therapy who are not refilling A subset of machine learning that permits software to train their prescription after 6 months itself to perform tasks by exposing it to vast amounts of data 6 © 2019 | IQVIA, All rights Reserved
...sul fronte clinico/scientifiche così come su quello dell’efficienza e dell’ «engagement», dimensioni sempre più interconnesse 7
Il potenziale è enorme...Le sfide da affrontare e vincere sono quelle della qualità dei dati, dell’interconnessione tra sistemi e piattaforme e della corretta interpretazione clinico-sanitaria e di costo/efficacia Unparallel Volume and Complexity, beyond any other industry 8 © 2019 | IQVIA, All rights Reserved
... senza menzionare il tema della verifica dei dati e della gestione della data privacy che a loro volta hanno peculiarità uniche nel LS Tech & Pharma giants invest in Blockchain technology German Ministry of Health is looking for blockchain concepts too 9 © 2019 | IQVIA, All rights Reserved
Il punto fondamentale è la reale capacità di creare valore, a fronte del rischio di favorire semplicemente un’esplosione di dati Format Neural Networks Remodeling Connect Real-Time Image Monitoring Processing Virtual Assistants Document Decision Making Tagging Pattern Recognition Assignment Classificatio AI Doctor n Augmented Reality Smart Search Data XML Virtual Reality Decision Digital Cleansing Conversion Output Human Platform Making Interaction Integration Transformation Quality Feedback Social, Web, Digital Engineering Input Smart NLP Meta Clinical, Medical Formation Workflow Meta- Analysis Natural Chatbots Data RPA Language Deconstruct Structure Tagging Generation Automated Advanced Analytics Neural Natural Reasoning Disease Models Machine Digital Lake Informatics Language Semantic Real World Data Models Translation Ontologies Population Health Models Processing Clinical Research Investigator Protocols Voice Brochures Informed Consent Multiple Forms languages Ethic Committee Letters Copyright © 2019 IQVIA. All rights reserved. IQVIATM is a registered trademark of IQVIA Inc. in the United States 10 and various other countries.
Le best practice IQVIA indicano la strada degli “umbrella frameworks”, capaci di indirizzare scelte clinico/sanitarie, economico/operative e strategiche INTEGRATED OPEN SECURE FUTURE-ORIENTED PHASED • Administrative + • All clinical systems • Data locally in the • Knowledge Base • Big bang is not Clinical • Room for own hospital • Support needed • Hospital-wide development and • GDPR • Continuity in the • Data access is • No silos external • Report-security product- gradually growing • Structured data + applications • Application- development • Applications are free text • BI agnostic security • Dialogue gradually growing (Cognos, Qlik, …) • User group is gradually growing Combined analysis Flexible access Respect privacy/GDPR Reliability Scalability 11 © 2019 | IQVIA, All rights Reserved
L’ambizione è interconnettere fonti diverse sfuttando piattaforme capaci di gestire e sinconizzare ecosistemi di dati diversi Electronic Medical Record | Clinical systems Structured data Unstructured data Reports Protocols Notes Discharge letters ... Rapidly evolving context Technologies Applications Potential partners Government … 12 © 2019 | IQVIA, All rights Reserved
CASE STUDY Il modello ospedaliero del futuro: un esempio pratico Hs PLATFORMS INTEGRATED OPEN SECURE FUTURE-ORIENTED PHASED REPORTS DASHBOARDS INDICATORs ANALYTICS BENCHMARKING SCHEDULING APPLICATION SERVER PATIENT FINDER APP SEARCH ENGINE Patiend Finder Python Clinical Data Collector text mining (web service) DWH Search- Export ADMIN INTEGRATED DWH CLINICAL cohortes engine ELT BACKEND SERVER SEARCH SERVER Gestructureerde data + Vrije text SOURCE ADT Invoicing ... LAB MEDICATIE ... Domain 1 Domain 2 ... ADMINISTRATIVE SOURCE SYSTEMS EMR LEGACY CLINICAL SYSTEMS 13 © 2019 | IQVIA, All rights Reserved
CASE STUDY I benefici impattano tutti gli stakeholders del sistema Hs PLATFORMS B E N E F I CI PATIENT PHYSICIAN HOSPITAL PAYER INDUSTRY • Higher quality of care • Easier access to • Faster access to • Improved visibility on • Stronger evidence in (because of better his/her own EMR data enabling eligible patient reimbursement access to outcome data efficiency gains population for drug dossiers indicators) • View on outcome • Monitoring of treatment supporting • Better monitoring of • Personalised and quality indicators (quality) indicators evidence based managed entry medicine (e.g. PROMS - • Linked financial and reimbursement agreements • Better treatment PREMS) clinical data for decision • Reduced costs in decision • Faster patient financial optimization • Better view on R&D due to faster • Ealier (rare) disease identification for • Faster response to resource use and patient identification diagnosis clinical trials clinical trials cost by disease • More robust patient • Faster clinical trial • More efficient set up improving chance to diagnosis and based brand enrollment of patient cohorts be selected severity forecasts • Better patient • Support in (rare) • Accelerate • Better monitoring of experience disease diagnosis implementation of managed entry the EMR agreements 14 © 2019 | IQVIA, All rights Reserved
Esempio: applicazioni ML per l’identificazione CASE STUDY di sotto-popolazioni per arruolamento in studi clinici RICERCA CLICNICA MODELLO TRADIZIONALE MODELLO «ENABLED» da ML 3 1 2 © 2019 | IQVIA, All rights Reserved 15
CASE STUDY I benefici calcolati in ambito R&D sono importanti RICERCA CLICNICA 143 105 13,8 75 20 7.1 Days Days Months Faster Faster Faster Months Days Days 6,7 123 30 Oncology Next NextGen Industry Industry Next NextGen Traditional Traditional Next NextGen Median generation Method average Average generation Method method Method generation Method approach approach approach SITE IDENTIFICATION FIRST PATIENT ENROLLMENT ENROLLED MONTHS 16 © 2019 | IQVIA, All rights Reserved
Modelli predittivi basati su cartelle cliniche ospedaliere per CASE STUDY migliorare la diagnosi in malattie rare PRATICA CLINICA Background Implementation and Impact • Under-diagnosis is a major IQVIA built a data-driven predictive model to enable better detection of these hard- issue and patients are often to-find patients and support earlier diagnosis and access to proper care misdiagnosed • Patients with this rare disease have very high levels of activity pre-diagnosis: on average, a patient has 25 hospital events Capture complexities in data in the 3 years prior to Data extract Examined the frequency, Identify key predictors diagnosis. Used data from partnership timing, and number of Identified key primary and with leading clinical centre and unique events defined by secondary diagnoses as Challenge integrated with national clinical and activities’ codes to well as specialty visits that • Above observations suggest hospital records to define predict patients earlier in differentiated patients with the medical history data could be patients’ medical history based disease course disease versus those without used to reveal undiagnosed on 700 prioritised clinical codes patients and detect patients earlier in the disease course Deploy machine learning model Performance of model exceeded KOL expectations – discussions now focused on developing screening tool to be deployed at specialty care clinical sites © 2019 | IQVIA, All rights Reserved 17
Applicazioni basate su analisi ed ottimizzazione del patient CASE STUDY PP Ottimization pathway, secondo un modello “Health Value Based” REQUISITI ed OPPORTUNITA’ • Sistemi Informativi Digitali ed Interoperabili: ospedale, territorio...ed oltre (Population Health Mngt) • Regole chiare e trasparenti di accesso e trattamento (GDPR compliant) per applicazioni Big Data cross- platforms • Apertura a sperimentare setting sanitari «orizzontali» (dalle attività ai pazienti), ottimizzando ruoli e REQUISITI competenze • Puntare sull’eccellenza del sistema sanitario, come fonte di attrazione risorse/investimenti Paese • Consentire al privato di essere risorsa del sistema... © 2019 | IQVIA, All rights Reserved 18
CODE is the European multi-stakeholder, collaborative group, led by IQVIA, that is supporting CASE STUDY CODE the creation of the Oncology Data Network (ODN) Copyright © 2019 IQVIA, All Rights Reserved. Confidential and Proprietary. 19 19
ILLUSTRATIVE – NOT TECHNICAL SCHEMATIC CASE STUDY We are building a flexible platform which extracts data from CODE existing clinical systems, any European cancer treatment centre and for all cancer types THE ODN Hospital Level Only an ODN Member can explore its own patient data Quality loop Healthcare Analytics Trusted Third Party (TPP)* Analytical outputs only n>=5 Non-identified data Network Level ODN Members can explore insights for different patient groups from across the network Sub-network A community to connect European Data Warehouse* Country Multi-country Non-identified data Europe Copyright © 2019 IQVIA, All Rights Reserved. Confidential and Proprietary. *Non-identified data is processed and stored in secure data centres which are certified by government agencies as required 9 20 in each country, or otherwise comply with industry securitystandards
CASE STUDY The current footprint in Europe is growing rapidly with 110 CODE member hospitals and first insights are being generated 110 11 Academic Hospitals ODN Member hospitals* 99 Non-academic Hospitals 6+ 38 Public Countries in scope 72 Private 77,000+ Est. Annual Patients onAnti- ODN Members Cancer Therapy Deployed ODN Members *As of April 2019 Copyright © 2019 IQVIA, All Rights Reserved. Confidential and Proprietary. 21 21
Luca Pinto Principal Real World Insights luca.pinto@iqvia.com +39 346 7224409
Puoi anche leggere