ENERGIA NUCLEARE PER LA SOSTENIBILITA' A LUNGO TERMINE - Documenti Universitari

Pagina creata da Giacomo Venturini
 
CONTINUA A LEGGERE
ENERGIA NUCLEARE PER LA SOSTENIBILITA' A LUNGO TERMINE - Documenti Universitari
"Sapienza" Università degli Studi di Roma
         Ingegneria Astronautica, Elettrica ed Energetica
                      Impianti Elettronucleari

       Seminari del Prof. Agostino Mathis – Anno 2018
                ENERGIA NUCLEARE
      PER LA SOSTENIBILITA’ A LUNGO TERMINE
             Terzo Seminario - 10 dicembre 2018

      9. Stato e prospettive dell’energia nucleare a fini civili: Stati
      Uniti, Germania, Francia, Italia, Regno Unito, Cina, India,
      Russia
      10. La gestione dei rifiuti radioattivi
      11. Le prospettive del Torio come elemento «fertile»

Prof. Agostino Mathis – Via Bertero, 61 – 00156 ROMA (Italy)
Cell. 338-1901198; E-mail: amathisit@yahoo.com                        1
ENERGIA NUCLEARE PER LA SOSTENIBILITA' A LUNGO TERMINE - Documenti Universitari
Le differenze tra i diversi Paesi
Molte delle cosiddette «democrazie occidentali» negli
ultimi decenni sono divenute «demagogie assembleari»,
condizionate non più dai mass media ma dai social media
(dove gli algoritmi dei motori di ricerca polarizzano le
opinioni, invece di favorire una dialettica costruttiva!).

Tali democrazie, quindi, si dimostrano di fatto incapaci di
decidere e mantenere progetti a lungo termine, basati su
conoscenze e competenze complesse.

Ma non tutti i Paesi del mondo si trovano in queste
condizioni, e neanche tutte le «democrazie occidentali».
ENERGIA NUCLEARE PER LA SOSTENIBILITA' A LUNGO TERMINE - Documenti Universitari
La «crisi energetica» degli anni 1970
Come descritto nel Primo Seminario, le stesse ditte USA
costruttrici dei reattori navali vennero chiamate a costruire decine
di centrali nucleari a seguito della crisi energetica degli anni
1970: così oggi il 60% dei reattori commerciali operanti nel
mondo è del tipo PWR, ed è probabile che sempre questo tipo di
reattore sarà per tutto questo secolo il “cavallo da tiro” che
fornirà energia alle conurbazioni che si vanno delineando anche
nei grandi Paesi in via di rapido sviluppo (Cina, India, ecc.).

Un altro 20% dei reattori commerciali è sempre refrigerato da
acqua, ma bollente (Boiling Water Reactor: BWR). Infine, vi è
ancora un 10% di reattori moderati e refrigerati ad acqua
pesante, di tecnologia canadese (CANadian Deuterium Uranium:
CANDU), ed un 10% di altri tipi (refrigerati a gas o a metallo
liquido).
ENERGIA NUCLEARE PER LA SOSTENIBILITA' A LUNGO TERMINE - Documenti Universitari
I «programmi nucleari» degli anni 1970 (1/2)
A seguito della grave crisi energetica, anche in altri Paesi vennero
avviati   importanti    programmi      di   costruzione   di   impianti
elettronucleari, con una prospettiva pluridecennale.

Tali programmi, tuttavia, giunsero a buon fine soltanto nei Paesi
dove la “governance” del sistema energetico venne mantenuta
stabile e lungimirante anche a fronte dei cambiamenti politici e delle
turbolenze dei prezzi dell’energia convenzionale: esempi di questo tipo
furono la Svezia, la Francia, il Giappone e la Corea del Sud.

Altri Paesi invece lasciarono che anche il settore nucleare seguisse
l’impostazione privatistica che a partire dai Paesi anglosassoni
stava pervadendo tutti i servizi, compresa l’energia.
ENERGIA NUCLEARE PER LA SOSTENIBILITA' A LUNGO TERMINE - Documenti Universitari
I «programmi nucleari» degli anni 1970 (2/2)
Ad esempio, nel caso degli Stati Uniti la crisi energetica indusse
moltissime aziende elettriche, anche piccole ed inesperte, ad
intraprendere la costruzione di impianti nucleari. Furono avviati oltre
200 progetti, per impianti in gran parte diversi tra di loro.

Negli anni successivi, da un lato il crollo del prezzo del petrolio e delle
altre fonti fossili, dall’altro difficoltà tecniche, organizzative e di
accettazione pubblica, conseguenti in particolare all’incidente di Three
Mile Island, comportarono la sospensione di circa la metà di quei
progetti, con un grave danno economico e di immagine per
l’industria nucleare, non solo negli Stati Uniti ma in tutto il
mondo. La stasi nella realizzazione di nuovi impianti nucleari
che si è verificata, almeno in Occidente, negli ultimi decenni, è in
gran parte dovuta a queste ragioni.
ENERGIA NUCLEARE PER LA SOSTENIBILITA' A LUNGO TERMINE - Documenti Universitari
Nuovo interesse per il nucleare in USA (1/2)
From: http://www.world-nuclear.org/information-library/country-
profiles/countries-t-z/usa-nuclear-power.aspx

Today the importance of nuclear power in USA is geopolitical as much as
economic, reducing dependency on oil and gas. The operational cost of nuclear
power in existing plants is very competitive with alternatives. In 2012 it was 2.4
¢/kWh, compared with gas 3.4 ¢/kWh and coal 3.3 ¢/kWh. But plans for new
nuclear capacity are starting to take account of opportunities for small reactors
as well as large ones.
                          …omissis…
Today, due to the advent of shale gas, costs of power from gas-fired plant are
much lower. The reason for investment being predominantly in gas-fired plant was
also that it offered the lowest investment risk. Several uncertainties inhibited
investment in capital-intensive new coal and nuclear technologies.
                          …omissis…
This creates an energy investment crisis which was recognised in Washington,
along with an increasing bipartisan consensus on the strategic importance and
clean air benefits of nuclear power in the energy mix.
ENERGIA NUCLEARE PER LA SOSTENIBILITA' A LUNGO TERMINE - Documenti Universitari
Nuovo interesse per il nucleare in USA (2/2)
From: http://www.world-nuclear.org/information-library/country-
profiles/countries-t-z/usa-nuclear-power-policy.aspx

In 2017 NuScale Power submitted a loan guarantee application to support its
Carbon Free Power Project, involving the first small modular reactor (SMR) to be
built in the USA. The Utah Associated Municipal Power System (UAMPS) would own
the plant, with planning underway for a site at Idaho National Laboratory, near
Idaho Falls, Idaho.

Public opinion regarding nuclear power has generally been fairly positive, and has
grown more so as people have had to think about security of energy supplies.
Different polls show continuing increase in public opinion favourable to nuclear
power in the USA. More than three times as many strongly support nuclear energy
than strongly oppose it. Two-thirds of self-described environmentalists favour it.

An October 2017 poll by Bisconti Research (N=1000) found that 64% of Americans
favour the use of nuclear energy, with just 25% opposing it. 71% of the
respondents believed that nuclear energy should be somewhat or very important in
meeting the USA’s future energy needs.
ENERGIA NUCLEARE PER LA SOSTENIBILITA' A LUNGO TERMINE - Documenti Universitari
August 2017

              …continua…
ENERGIA NUCLEARE PER LA SOSTENIBILITA' A LUNGO TERMINE - Documenti Universitari
…continua…
ENERGIA NUCLEARE PER LA SOSTENIBILITA' A LUNGO TERMINE - Documenti Universitari
…continua…
EPACT: the Energy Policy Act of 2005 (Pub.L. 109–58) is a bill passed by the United States Congress on
July 29, 2005, and signed into law by President George W. Bush on August 8, 2005, at Sandia National
Laboratories in Albuquerque, New Mexico.
                                                                                …continua…
Germania: la «Energiewende»
…continua…
Energiewende: «eco-orrore» in Germania!

From: Guardian – Aug. 27, 2014
Da: http://www.rinnovabili.it/ambiente/carbone-flop-tedesco-emissioni-333/
Da: http://www.rinnovabili.it/ambiente/carbone-flop-tedesco-emissioni-333/
Un confronto: Germania vs. Francia
EDF Group Senior Executive Vice President, Nuclear and Thermal,
Dominique Miniere:
“Germany's 80 GW installed renewable energy capacity is
about 1.3 times installed French nuclear capacity, but
produces three to four times less power per year because
solar and wind operate only about 15 per cent of the time
compared to about 80 percent for nuclear.
In 2010 French power production emitted 10 times less
carbon than Germany's, but as Germany has switched on
more coal and lignite plants to compensate for closed nuclear
reactors, France now emits 30 times less carbon.”
From: http://www.powerengineeringint.com/articles/2016/05/edf-nuclear-chief-says-100-per-
cent-renewables-by-2050-unrealistic.html
Italia e energia: un rapporto difficile (1/2)

Anni 1960-1970 – Italia all’avanguardia nella produzione di
energia elettronucleare tra i Paesi senza armi nucleari.

1987 – Referendum post-Chernobyl dice «no» al nucleare:
«stranded assets» per 100.000 miliardi di Lire, a carico non di
ENEL o industrie, ma degli utenti elettrici (supplemento termico).
Esplosione del debito pubblico.

Anni 1990 – Privatizzazione dell’energia elettrica. ENEL
diversifica nelle TLC. Sussidi a rinnovabili e assimilate, e
quindi anche a gas naturale e bunker.

Settembre 2003 - Black-out nazionale, fino a 48 ore al Sud.

2005-2010 – Decreto «sblocca centrali»: decine di nuove
centrali a gas per decine di miliardi di Euro.
Italia e energia: un rapporto difficile (2/2)

2008-2016       –   Impatto    delle    «nuove    rinnovabili
elettriche», non-programmabili: sussidi, a carico degli utenti
elettrici, per 200 miliardi di Euro su vent’anni. Prezzo del
kWh doppio che in Francia. Delocalizzazione o crisi delle
industrie energivore (ALCOA, ecc.). Il PIL scende del 10% e
l’industria del 25%.

2011 – Nuovo referendum, che si svolge poco dopo
Fukushima: nuovo «no» al nucleare, che annulla il
programma per la costruzione di 4 impianti nucleari per un
totale di 6000 MWe.

2015 e anni seguenti - L’Italia importa circa l’80% del suo
fabbisogno energetico: dalla Russia anche il 50% del gas
naturale, da Francia e Svizzera il 15% dell’energia
elettrica (di origine nucleare!).
Le «nuove rinnovabili» in Italia
In Italia il fotovoltaico, con potenza installata doppia ma
fattore di carico ridotto rispetto all’eolico, riduce a circa il
15% il fattore di carico globale del mix delle fonti non-
programmabili. Quindi, anche la penetrazione totale delle
fonti   non-programmabili      non     sarebbe    praticamente
sostenibile, senza incentivi pubblici, oltre il 15%.

Nel 2017 (v. tavola seguente), fotovoltaico ed eolico
hanno dato in totale il 13,3%. Senza incentivi, quindi, si
potrà   andare    poco      oltre,   divenendo   sempre   meno
conveniente      vendere      sul    libero   mercato   l’energia
prodotta da queste fonti.
Nel grafico la quota percentuale delle diverse fonti
rinnovabili sul fabbisogno elettrico in Italia dal 2014 al 2017.

From: https://www.qualenergia.it/articoli/20180122-fonti-rinnovabili-in-calo-nel-2017-
ma-record-di-produzione-del-fotovoltaico/
Un confronto: Italia vs. Francia (1/2)
Un confronto: Italia vs. Francia (2/2)
Quarant’anni fa l’Italia era all’avanguardia in Europa
nell’uso dell’energia nucleare. Nel 2017, in Italia:

•   oltre il 70% dell’elettricità è prodotta da fonti fossili, quasi
    tutte importate dall’estero, e da Paesi a rischio;

•   ma   l’elettricità   consumata      per   il   13%    proviene
    dall’estero, ed in gran parte è di origine nucleare, fornita
    proprio dalla Francia!

•   per le imprese il kWh costa circa il doppio rispetto alla
    Francia;

•   come decarbonizzare la produzione elettrica al 2050?
Il caso UK: una strategia a lungo termine
Ma ci sono anche «democrazie occidentali» lungimiranti:
ad es., il Regno Unito.

Nel 2008 venne approvato il Climate Change Act, che
prevede al 2050 una riduzione delle emissioni di gas-serra
dell'80% rispetto     al 1990; in questa prospettiva, un
rinnovato, forte impegno nel nucleare viene ora ritenuto
indispensabile.

Almeno una decina di nuovi grandi impianti nucleari, per
oltre 16 GWe, sono già previsti per il 2035.
From: http://fes.nationalgrid.com/media/1253/final-fes-2017-updated-interactive-pdf-44-amended.pdf
I nuovi impianti nucleari per il Regno Unito

From: http://www.world-nuclear.org/information-library/country-profiles/countries-t-z/united-kingdom.aspx
Hinkley Point C

From: http://www.world-nuclear.org/Press-and-Events/
Il cantiere di Hinkley Point C nel Regno Unito

From: https://www.worldnuclearreport.org/IMG/pdf/20180902wnisr2018-hr.pdf
Hinkley Point C e la «decarbonizzazione»
Rispetto ad una equivalente centrale a carbone, Hinkley Point C
(3300 MWe di potenza e 60-80 anni di vita utile) risparmia:

# 7,5 milioni di tonnellate/anno di carbone, e quindi

# 28 milioni di tonnellate/anno di CO2 , e quindi

# in 70 anni di vita utile, ben 2 miliardi di tonnellate di CO2!

Quindi, mezzo migliaio di centrali nucleari da 3000 GWe,
costruite nel mondo nei prossimi trent’anni al posto di centrali
a carbone (tuttora in programma), ridurrebbero le emissioni
entro fine secolo di circa 1000 miliardi di tonnellate di CO2
(che, come visto, equivalgono al budget ancora a disposizione per
restare entro i 2°C di aumento della temperatura).
La strategia nucleare del Regno Unito (1/3)
Il   Governo     inglese     ritiene   che    il   perseguimento        della
"roadmap" nucleare non può essere lasciata al libero
mercato, in quanto incapace di porsi obiettivi a lungo
termine, e non in grado di assicurare efficaci sinergie tra
l'università, i laboratori nucleari nazionali e l'industria.

Opinione pubblica:

http://www.world-nuclear.org/info/Country-Profiles/Countries-T-Z/United-Kingdom/
La strategia nucleare del Regno Unito (2/3)
Oltre ai nuovi impianti previsti per il 2035 (otto nuovi grandi
impianti di tipo PWR o BWR: v. la precedente tabella), viene
anche considerata l’ipotesi di costruire reattori in grado di
consumare le grandi riserve di Plutonio del Paese (oltre
100 tonnellate). Questi reattori possono essere:

•   reattori a neutroni veloci (come il PRISM di GE Hitachi);

•   o i reattori ad acqua pesante (come il CANDU).

(V. la precedente tabella, in fondo, dove è ipotizzata la loro
localizzazione a Sellafield, in Cumbria, sede degli impianti di
ritrattamento del combustibile nucleare).
La strategia nucleare del Regno Unito (3/3)

From: http://euanmearns.com/uk-electricity-2050-part-2-a-high-nuclear-model/#more-15604
From: http://www.world-nuclear-news.org/NN-GEH-and-Southern-team-up-on-Prism-0111168.html
                                                                  … continua…
… continua…

 Prism is a sodium cooled fast neutron reactor design built on more than
 30 years of development work, benefitting from the operating experience
 of the EBR II prototype integral fast reactor which operated at the USA's
 Idaho National Laboratory from 1963 to 1994.

 Each Prism reactor has a rated thermal power of 840 MW and an
 electrical output of 311 MWe. Two Prism reactors make up a power
 block, producing a combined total of 622 MW of electrical output.

 Using passive safety, digital instrumentation and control, and modular
 fabrication techniques to expedite plant construction, the design uses
 metallic fuel, such as an alloy of zirconium, uranium, and plutonium. It
 can therefore be used to close the nuclear fuel cycle, recycling used
 nuclear fuel to generate energy.

 From: http://www.world-nuclear-news.org/NN-GEH-and-Southern-team-up-on-Prism-0111168.html
                                                                   … continua…
… continua…

 According to GEH, commercialized Prism technology could be used
 eventually to consume all the nuclear material contained in the
 world's used nuclear fuel.

 Assuming:

 # 178,000 tonnes of nuclear material are contained in worldwide
 stocks of nuclear fuel and

 # a per household consumption of 3400 kWh per year,

 the company claims this scenario could provide enough energy to
 power the world's households for up to 200 years.

 GEH has proposed the Prism reactor as a possible option for
 managing the UK's plutonium stockpile (circa 120 tonnes, which
 could supply all UK electricity for several years!).

 From: http://www.world-nuclear-news.org/NN-GEH-and-Southern-team-up-on-Prism-0111168.html
Small reactors for UK
The 2015 program to "revive the UK's nuclear expertise" especially through
developing small modular reactors (SMRs) has been accompanied by
expressions of interest from various quarters.
                            …omissis…
Since October 2015 NuScale, a 55% Fluor subsidiary, aims to deploy its 50
MWe SMR in the UK by the mid-2020s, and seeks partners for this in addition to
Sheffield Forgemasters. In January 2016 National Nuclear Laboratory (NNL)
confirmed that the NuScale reactor can run on MOX fuel, and said that a 12-
module NuScale plant with full MOX cores could consume 100 tonnes of
reactor-grade plutonium in about 40 years, generating 200 TWh from it.
                            …omissis…
Early in 2016 Rolls-Royce said it had submitted a detailed design to the
government for a 220 MWe SMR unit, an SMR of fairly conventional design. It
then submitted a paper to the Department of Business, Energy and Industrial
Strategy, outlining its plan to develop a fleet of 7 GWe of SMRs with a new
consortium.
                            …omissis…
UK deployment of SMRs should allow for their use as combined heat and
power (CHP) plants, supplying power to district heating.

From: http://www.world-nuclear.org/information-library/country-profiles/countries-t-z/united-kingdom.aspx
Energia elettrica «carbon-free» in Europa: all’avanguardia i Paesi
con molto nucleare; l’Italia e la Germania fanno una povera figura!
From:
https://twitter.com/CountCarbon/status/728031317556875266/photo/1?ref_src=twsrc%5Etfw
The case of China (1/2)
Per capita electricity consumption was 3510 kWh in 2012. By 2030 it is
expected to be 5500 kWh/yr and by 2050 about 8500 kWh/yr.
Electricity generation in 2016 increased 4.9%, to 6022.8 TWh. That from
fossil fuels was 4327 TWh (72%), from hydro 1175 TWh (19.5%), nuclear 213
TWh (3.5%), wind 241 TWh and solar 66.5 TWh, according to the China
Electricity Council. Nuclear generation was 24% up on 2015. Net exports were
11 TWh in 2014, 9 TWh of it to Hong Kong, adding to its 40 TWh generation (30
TWh from coal, 9 TWh from gas).
According to the China Nuclear Energy Association, nuclear generation in
2017 increased to 247.5 TWh, providing 4% of electricity supply.
Installed generating capacity has been increasing at nearly 10% per year
since 2010 and reached 1521 GWe at the end of 2015, and 1645 GWe in 2016,
according to the China Electricity Council. At the end of 2016 fossil fuelled
capacity (mostly coal) reached 1054 GWe, hydro capacity was 332 GWe (up 13
GWe in the year), nuclear capacity was 33.6 GWe, wind capacity reached 149
GWe and solar PV 77 GWe.

From: http://www.world-nuclear.org/information-library/country-profiles/countries-a-f/china-
nuclear-power.aspx - November 2017.
From: https://www.nextbigfuture.com/2017/10/china-renewable-energy-is-mostly-hydro-and-kilowatts-are-not-kilowatt-hours.html
The case of China (2/2)
At the end of 2016, in China there are 35 nuclear power
reactors in operation, and 20 in construction.

Other 41 reactors are planned and 136 proposed, to
reach a nuclear capacity of the order of 58 GWe at 2020-
2021 and 150 GWe at 2030. By around 2040:

•   PWRs (Pressurized Water Reactors) are expected to level
    off at 200 GWe and

•   fast reactors progressively increase from 2020 to at
    least 200 GWe by 2050 and 1400 GWe by 2100.

From: http://www.world-nuclear.org/Information-Library/ - November 2016.
Limiting the global temperature rise to below 1.5 °C
In October 2018 the NDRC's Energy Research Institute said that China's
nuclear generating capacity must increase to 554 GWe by 2050 if the
country is to play its part in limiting the global temperature rise to below
1.5 °C. The share of nuclear power in the country's energy mix would thus
increase from 4% to 28% over this period.

The study (*) said that assuming an all-in cost of CNY 20,000 (approximately
$3000) per kW of capacity in large plants, an investment of more than CNY 8.7
trillion ($1.3 trillion) would be required. Based on capacity additions over the
past few years, the total investment demand to 2050 was considered to be
feasible.

(*) V. tavola seguente.

From: http://www.world-nuclear.org/information-library/country-profiles/countries-a-f/china-
nuclear-power.aspx - November 2018
China Nuclear Power Plant Construction

From: http://www.world-nuclear.org/information-library/country-profiles/countries-a-f/china-nuclear-power.aspx
From: http://www.world-nuclear.org/information-library/country-profiles/countries-a-f/china-nuclear-power.aspx
A revival of CANDU reactors in China
In 2012 an agreement with Candu Energy (formerly AECL)
focused on a detailed conceptual design of the Advanced
Fuel Candu Reactor (AFCR), optimized for use of recycled
uranium and thorium fuel. Initially the two Qinshan
CANDU units will be modified to become AFCRs, and
beyond that the first AFCR new build project is envisaged.

One AFCR can be fully fuelled by the recycled uranium
from four LWRs’ used fuel. Hence the deployment of AFCRs
will greatly reduce the task of managing used fuel and
disposing of high-level wastes, and will reduce China’s
fresh uranium requirements.
From: http://www.world-nuclear.org/Information-Library/ - December 2015.
AFCR: Advanced Fuel Candu Reactor; DU: Depleted Uranium; FBR: Fast Breeder Reactor;
LEU: Low Enriched Uranium; MOX: Mixed Oxide fuel; PWR: Pressurized Water Reactor; RU:
Recycled Uranium.

From: http://www.world-nuclear.org/Information-Library/ - December 2015.
Thorium molten salt reactor program in China
The China Academy of Sciences (CAS) in January 2011 launched a
programme of R&D on thorium-breeding molten salt reactors (Th-
MSR or TMSR), otherwise known as liquid fluoride thorium reactors
(LFTR), claiming to have the world's largest national effort on these and
hoping to obtain full intellectual property rights on the technology.

The unit the Shanghai Institute of Applied Physics (SINAP, of CAS)
is building is said to be similar to the 7 MWth Oak Ridge test MSR
which ran 1965-1969 in the USA with U-235 then U-233 fuels.

The timeline for full commercialization of TMSR technology was
originally 25 years, but is has been dramatically shortened, which
may be reflected in increased funding (see next table).

From: http://www.world-nuclear.org/Information-Library/ - December 2015.
TMSR Schedules (TMSR-SF: with Solid Fuel; TMSR-LF: with Liquid Fuel)

From: http://www.owaki.info/etc/msr20180614/Progress%20%20of%20TMSR%20in%20China.pdf
From: http://www.owaki.info/etc/msr20180614/Progress%20%20of%20TMSR%20in%20China.pdf
The TMSR-SF2 demonstration reactor

From: http://www.owaki.info/etc/msr20180614/Progress%20%20of%20TMSR%20in%20China.pdf
The case of India
India in 2016 produced 1478 TWh of electricity, 1105 TWh
(75%) of this from coal, 138 TWh (9%) from hydro, 71 TWh
(5%) from natural gas, 59 TWh (4%) from solar and wind,
38 TWh (2.6%) from nuclear, 44 TWh from biofuels,
and 23 TWh from oil.
From: http://www.world-nuclear.org/information-library/country-profiles/countries-g-n/india.aspx

As of March 2018, India has 22 nuclear reactors in
operation in 7 nuclear power plants, having a total
installed capacity of 6,780 MWe.

Six     more        reactors         are     under        construction            with      a
combined generation capacity of 4,300 MWe.
From: https://en.wikipedia.org/wiki/Nuclear_power_in_India
From: https://swarajyamag.com/technology/explained-why-india-is-betting-big-on-heavy-water-reactors
From: https://swarajyamag.com/technology/explained-why-india-is-betting-big-on-heavy-water-reactors
The long-term India's nuclear program (1/2)
It has been based on an advanced heavy-water thorium cycle.
The first stage of this employs the pressurized heavy water
reactors (PHWR) fueled by natural uranium, and light water
reactors, which produce plutonium besides electricity.

The second stage uses fast neutron reactors burning the
plutonium with the blanket around the core having uranium as
well as thorium, so that further plutonium is produced as well
as U-233. In India have been identified almost 12 million tonnes
of monazite resources (typically with 6-7% thorium).

In stage 3, Advanced Heavy Water Reactors (AHWR) would burn
thorium-plutonium fuels and breeds U-233, which can eventually
be used as a self-sustaining fissile driver.

From: https://en.wikipedia.org/wiki/Nuclear_power_in_India
The long-term India's nuclear program (2/2)
In May 2017 the cabinet approved ten 700 MWe PHWRs, as a
“fully homegrown initiative” with likely manufacturing orders
to Indian industry of about INR 700 billion ($11 billion). The
prime minister said it would help transform the domestic nuclear
industry, which appears to suggest lower expectations of
establishing new nuclear plants with Western technology.
From: http://www.world-nuclear.org/information-library/country-profiles/countries-g-n/india.aspx

This takes the number of planned 700 MWe PHWRs in India
to 14, four of which are currently under construction.
Currently, India has 12 operational PHWRs with significantly
lower capacities of 100 MW, 200 MW, 220 MW and 540 MW.
From: https://swarajyamag.com/technology/explained-why-india-is-betting-big-on-heavy-water-reactors
From: http://www.aame.in/2013/09/pressurized-heavy-water-reactor-phwr.html
The case of Russian Federation (1/3)
Electricity production was 1091 TWh in 2016, of which 522
TWh (48%) was from gas, 197 TWh (18%) from nuclear,
187 TWh (17%) from hydro and 171 TWh (16%) from coal.

Rosatom's current long-term strategy up to 2050 involves
moving to inherently safe nuclear plants using fast
reactors        with      a     closed       fuel      cycle,      especially          under
the Proryv (Breakthrough) project. It envisages nuclear
providing 45-50% of electricity at that time, with the share
rising to 70-80% by the end of the century. The ultimate
aim of the closed fuel cycle is to eliminate the production of
radioactive waste from power generation.

From: http://www.world-nuclear.org/information-library/country-profiles/countries-o-
s/russia-nuclear-power.aspx - October 2018.
The case of Russian Federation (2/3)

 From: V. Pershukov «Nuclear Technologies in Russia» IAEA – St Petersburg, 27-29 June 2013.
The case of Russian Federation (3/3)
Transition to Fast Reactors

Innovative nuclear power for Russia is based on full recycling of
fuel, balancing thermal and fast reactors, so that 100 GWe
of total capacity requires only about 100 tonnes of input
per year, from enrichment tails, natural uranium and
thorium, with minor actinides being burned.

About only 100 t/yr of fission product wastes go to a
geological repository.

At Beloyarsk the BN-600 reactor has operated successfully
since 1980. The BN-800 reactor at Beloyarsk has operated
since 2014, as a demonstration unit for the BN-1200.

From: http://www.world-nuclear.org/information-library/country-profiles/countries-o-s/russia-nuclear-power.aspx
From: V. Pershukov «Nuclear Technologies in Russia» IAEA – St Petersburg, 27-29 June 2013.
The BN-800 fast neutron reactor

From: http://euanmearns.com/the-bn-800-fast-reactor-a-milestone-on-a-long-road/
The internals of BN-800 fast neutron reactor

From: http://euanmearns.com/the-bn-800-fast-reactor-a-milestone-on-a-long-road/
A view of the BN-800 fast neutron reactor plant

From: http://euanmearns.com/the-bn-800-fast-reactor-a-milestone-on-a-long-road/
MA: Minor Actinides; MOX: Mixed Oxides.
From: V. Pershukov «Nuclear Technologies in Russia» IAEA – St Petersburg, 27-29 June 2013.
Russia leads the world at nuclear-reactor exports
  In April 2018 Russia started building Turkey’s first nuclear plant, worth $20bn. Its
  first reactor is due for completion in 2023. Rosatom says it has 33 new plants on
  its order book, worth some $130 bn. A dozen are under construction, including
  in Bangladesh, India and Hungary.

From: https://www.economist.com/graphic-detail/2018/08/07/russia-leads-the-world-at-nuclear-reactor-exports
Export sales for Russian nuclear plants
Russia currently has abroad, besides 8 plants operating, 7
plants in construction, 12 contracted, 11 ordered and 30
proposed worldwide, across Europe, Southeast Asia, North
Africa and the Middle East.

Russia's policy for building nuclear power plants in non-
nuclear weapons states is to deliver on a turnkey basis,
including supply of all fuel and repatriation of used fuel for
the life of the plant.

Rusatom Overseas expects two export Russian reactors
constructed on a build-own-operate (BOO) basis to be
operating soon after 2020 and 24 by 2030.
From: http://www.world-nuclear.org/information-library/country-profiles/countries-o-s/russia-nuclear-power.aspx
La gestione dei rifiuti radioattivi

La tecnologia nucleare è l’unica tecnologia energetica che si
assume l’intera responsabilità di tutti i propri rifiuti, e
che ne carica il costo sul proprio prodotto.

Per una data energia prodotta, il peso e il volume dei
rifiuti nucleari sono estremamente ridotti rispetto a quelli
delle altre fonti di energia, sia fossili che rinnovabili (alcuni
dei quali sono anche notevolmente tossici e/o radioattivi).

Il combustibile nucleare usato negli attuali reattori viene in
molti Paesi considerato «rifiuto», ma in realtà oltre il 95% è
costituito da materiale fissile (Uranio 235, plutonio e altri
attinidi) o fertile (Uranio 238), che costituiscono una
potenziale enorme riserva di energia.

A differenza degli altri rifiuti tossici, quelli radioattivi nel
tempo riducono la loro pericolosità.
Wastes produced annually in Europe

From: F. Troiani “La gestione dei materiali radioattivi” Seminario per i parlamentari – Roma 23 luglio 2008.
From: F. Troiani “La gestione dei materiali radioattivi” Seminario per i parlamentari – Roma
23 luglio 2008.
Management of radioactive “waste”

Therefore, it is possible to retain that:

# with a large scale world-wide nuclear power
capacity, implemented with a well balanced fleet of
reactors of different kinds,

#   a   carefully   planned   management    of   man-made
radioactive waste at long term should not modify the
global radioactivity inventory of the Earth (possibly, it
could also be reduced!).
From: Carlo Rubbia «A future for Thorium Power?» - Thorium Energy
Conference 2013 – ThEC13, in Geneva, October 27 to 31, 2013.
From: Carlo Rubbia «A future for Thorium Power?» - Thorium Energy
Conference 2013 – ThEC13, in Geneva, October 27 to 31, 2013.
From: Carlo Rubbia «A future for Thorium Power?» - Thorium Energy
Conference 2013 – ThEC13, in Geneva, October 27 to 31, 2013.
From: Carlo Rubbia «A future for Thorium Power?» - Thorium Energy
Conference 2013 – ThEC13, in Geneva, October 27 to 31, 2013.
From: Carlo Rubbia «A future for Thorium Power?» - Thorium Energy
Conference 2013 – ThEC13, in Geneva, October 27 to 31, 2013.
From: Carlo Rubbia «A future for Thorium Power?» - Thorium Energy
Conference 2013 – ThEC13, in Geneva, October 27 to 31, 2013.
From: Carlo Rubbia «A future for Thorium Power?» - Thorium Energy
Conference 2013 – ThEC13, in Geneva, October 27 to 31, 2013.
From: Carlo Rubbia «A future for Thorium Power?» - Thorium Energy
Conference 2013 – ThEC13, in Geneva, October 27 to 31, 2013.

                                             =========
                                              million
From: Carlo Rubbia «A future for Thorium Power?» - Thorium Energy
Conference 2013 – ThEC13, in Geneva, October 27 to 31, 2013.
Puoi anche leggere