ANNO SCOLASTICO 2021/2022 - PROGRAMMAZIONE DIDATTICA ANNUALE

Pagina creata da Sabrina Mariotti
 
CONTINUA A LEGGERE
ANNO SCOLASTICO 2021/2022 - PROGRAMMAZIONE DIDATTICA ANNUALE
PROGRAMMAZIONE DIDATTICA ANNUALE
                    ANNO SCOLASTICO 2021/2022
DOCENTE PROF./ PROF.SSA                          BETTINI LORETTA
MATERIA DI INSEGNAMENTO                          MATEMATICA
CLASSE                                           VB I.T.T.

                                              Finalità formative

Lo studio della matematica nel quinto anno ha lo scopo di proseguire ed ampliare la preparazione scientifica
e culturale avviata negli anni precedenti e di concorrere al consolidamento dello spirito critico degli alunni
mediante i seguenti obiettivi:
1) Conoscenze a livelli più elevati di astrazione e di formalizzazione;
2) Capacità di esprimersi anche con un linguaggio formale;
3) Competenze circa l'uso del simbolismo matematico riconoscendo le regole sintattiche di trasformazioni di
  formule;
4) Capacità di utilizzare metodi e strumenti matematici anche in situazioni diverse.

                        Risultati di apprendimento in termini di Competenze

La disciplina concorre in particolare al raggiungimento delle seguenti competenze:

- Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni
  problematiche, elaborando opportune soluzioni
- Utilizzare il linguaggio e i metodi propri della matematica per organizzare e valutare adeguatamente
  informazioni qualitative e quantitative
 - Acquisire versatilità nell’impostare problemi disparati, anche nella prospettiva di conversione di attività
  professionale.
- Comprendere il rapporto scienza-tecnologia, riconoscendo il contributo della Matematica allo sviluppo delle
  scienze sperimentali.
MOD.1 : Calcolo Integrale

- Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni
problematiche, elaborando opportune soluzioni

Utilizzare il linguaggio e i metodi propri della matematica per organizzare e valutare adeguatamente informazioni qualitative e
quantitative

 U.D.             Conoscenze                           Abilità                            Tempi           Obiettivi
                                                                                          in Ore          Minimi

 Prerequisiti     - Conoscere le regole di             - Saper applicare le                SETT.          - Conoscere le regole
                  derivazione                          regole di derivazione                              di derivazione e le
                                                                                           Ore 6          derivate fondamentali
                                                                                                          - Saper calcolare le
 U.D.1:           - Conoscere il concetto di           - Saper riconoscere la                             derivate di funzioni
                  primitiva di una funzione.           primitiva di una funzione
 Integrali        - L’integrale indefinito e le        - Saper calcolare gli                OTT.          - Calcolare integrali
 Indefiniti       sue proprietà.                       integrali indefiniti                               indefiniti non troppo
                  - Conoscere i metodi di              utilizzando i vari metodi di           e           complessi mediante i
                  integrazione immediata,              integrazione                                       metodi di integrazione
                  per decomposizione, di                                                    NOV.          visti.
                  funzioni composte, per
                  sostituzione e per parti, di                                             Ore 24
                  funzioni razionali fratte

                  - Concetto di integrale              - Saper calcolare integrali                        - Calcolare integrali
 U.D.2:           definito e relative                  definiti                             DIC           definiti non troppo
                  proprietà.                           - Saper utilizzare il calcolo                      complessi
 Integrali        - La funzione integrale e la         integrale per calcolare             Ore 10         - Calcolare aree di
 definiti         sua derivata: il teorema             aree di superfici piane,                           superfici piane
                  fondamentale del calcolo             volumi di solidi di
                  integrale.                           rotazione, lunghezze di
                                                       archi di curve piane

MOD. 2 : Prove Invalsi

 U.D.                Conoscenze                            Abilità                                Tempi        Obiettivi
                                                                                                  in Ore       Minimi
 U.D.1:              - Acquisire nozioni                   - saper risolvere i test delle         GENN:
                     fondamentali per la                   prove Invalsi                          classe
 Prove               compilazione dei test                                                        in
 Invalsi             relativi alle Prove Invalsi                                                  stage

                                                                                                  FEBB

                                                                                                  Ore 4
MOD. 3: Equazioni Differenziali

- Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni problematiche, elaborando
opportune soluzioni

 U.D.                 Conoscenze                        Abilità                              Tempi          Obiettivi
                                                                                             in Ore         Minimi

                      - Concetti di equazione           - Saper determinare le
 U.D.1:               differenziale, di integrale       soluzioni (integrali                  FEBB          - Saper risolvere
                      generale e particolare            generali e particolari) di                          equazioni differenziali
 Equazioni            - Problema di Cauchy              equazioni differenziali del           Ore 12        del Primo ordine non
 differenziali        - Metodi di risoluzione di        primo ordine                                        particolarmente
 del Primo            equazioni differenziali del       - Saper risolvere problemi                          complesse
 Ordine               primo ordine: a variabili         di natura tecnica
                      separabili, lineari               mediante equazioni
                      omogenee e complete               differenziali del
                                                        primo ordine

 U.D.2:               - Metodi di risoluzione di        - Saper risolvere                                   - Saper risolvere
                      equazioni differenziali del       equazioni differenziali del                         equazioni differenziali
 Equazioni            secondo ordine                    Secondo Ordine che si                               del secondo ordine
 differenziali        omogenee e non, a                 presentano in diverse                MARZO          omogenee
 del                  coefficienti costanti con         forme.
 Secondo              r(x) polinomio, risolte con       - Saper risolvere problemi            Ore 10
 Ordine               il principio della                di natura tecnica
                      somiglianza di polinomi           mediante equazioni
                                                        differenziali del
                                                        Secondo Ordine
                                                        - Saper risolvere il
                                                        Problema di Cauchy

MOD. 4: Risoluzione Approssimata di radici

- Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni problematiche, elaborando
opportune soluzioni

 U.D.              Conoscenze                           Abilità                              Tempi          Obiettivi
                                                                                             in Ore         Minimi

 U.D.1:            - Risolvere un’equazione             - Saper separare le                                 - Conoscere il
                   in modo approssimato                 radici di un’equazione                              significato di radice di
 L’analisi                                              - Saper risolvere in                 APRILE         una funzione
 Numerica                                               modo approssimato                                   - Conoscere il
                                                        un’equazione con il                    Ore 4        concetto di
                                                        metodo: di bisezione,                               separazione delle
                                                        delle secanti, delle                                radici
                                                        tangenti, iterativo
                                                        - Saper valutare l’errore
                                                        dell’approssimazione
MOD.5 : Serie Numeriche

- Utilizzare il linguaggio e i metodi propri della matematica per organizzare e valutare adeguatamente informazioni qualitative e
quantitative

 U.D.                Conoscenze                       Abilità                            Tempi           Obiettivi
                                                                                         in Ore          Minimi

 U.D.1:              - Successione di infiniti        - Acquisire il concetto di                         - Acquisire il concetto
                     numeri                           successione di                                     di serie numerica e di
 Successione         - Serie numeriche di             infiniti numeri reali              APRILE          carattere di una serie.
 e serie di          infiniti numeri                                                                     - Conoscere la serie
 infiniti            - Elementi e carattere di        - Acquisire i concetti di          Ore 8           geometrica e
 numeri              una serie                        serie numerica di numeri                           armonica
                     - La serie geometrica e          reali, di serie ridotta e di
                     la serie armonica                carattere di una serie
                     - Criterio di non                - Saper distinguere tra
                     convergenza                      condizioni necessarie e
                     - Criteri per la                 sufficienti
 U.D.2:              determinazione del                                                                  - Conoscere i criteri
                     carattere di una serie           - Saper determinare il                             di convergenza delle
 Criteri di          numerica; serie                  carattere di una serie                             serie e saperli
 convergenza         telescopica                      telescopica, geometrica e          MAGGIO          applicare in esercizi
 delle serie         - Serie numeriche a              saper applicare i criteri di                       non troppo complessi
 numeriche           termini positivi                 convergenza                        Ore 10
                     - serie armonica                 - Saper calcolare il valore
                     generalizzata, criterio          della somma di una serie
                     del rapporto, della              numerica
                     radice
                     - Calcolo del valore
                     della somma di una
                     serie numerica
                     convergente

        Ore preventivate (33 x n°3 ore settimanali) = 99 Ore totali                      Ore 88

                                          Obiettivi Minimi Saperi Essenziali

   - Conoscere il concetto di primitiva e di integrale indefinito e saper applicare i metodi di integrazione
   - Conoscere il concetto di integrale definito e saper calcolare l’area di superfici piane
   - Saper risolvere equazioni differenziali del primo ordine non particolarmente complesse
   - Saper risolvere equazioni differenziali del secondo ordine omogenee
   - Conoscere il concetto di serie numerica, di carattere di una serie e saper applicare i criteri di convergenza
     in esercizi non troppo complessi.

Tali contenuti sono descritti più ampiamente all’interno di questa stessa programmazione nei punti precedenti
Metodologie: strategie educative, strumenti, tecniche e tempi di lavoro. Attività di laboratorio
(se prevista), attività di progetto. Metodologie e strumenti per la didattica digitale attraverso
l’uso delle LIM, forme di apprendimento attraverso la didattica laboratoriale, strutturazione
di prove comuni. Indicazioni Relative alla gestione di eventuali forme di apprendimento erogate
mediante la DDI.

L’emergenza sanitaria ha comportato l’adozione di provvedimenti normativi che hanno riconosciuto la
possibilità (prima non prevista) di svolgere “a distanza” le attività didattiche delle scuole di ogni grado, su tutto
il territorio nazionale. Limitatamente all’a.s. 2019/20 la didattica digitale a distanza (DAD) è stata l’unica
modalità di erogazione del servizio scolastico.
A partire dal 1 settembre 2020, per osservare le misure di distanziamento prescritte dai documenti del CTS, è
stata attivata anche la DDI secondo una turnazione settimanale di gruppi minoritari.
Quest’anno l’emergenza sanitaria è riconosciuta almeno fino a dicembre, tuttavia la nuova normativa ha
autorizzato le lezioni in presenza sempre osservando le misure di distanziamento e le regole prescritte dal
documento del CTS. E’ prevista anche la DDI per quegli allievi che dovranno stare a casa per eseguire il
tampone o perchè in quarantena.
Questo comporta cambiamenti nelle metodologie didattiche:

    1. Verrà utilizzata la piattaforma Google Meet, presente su G Suite for Education, per attivare l’eventuale
       DDI
    2. Verrà utilizzata costantemente la LIM come strumento per applicare, verificare ed esporre conoscenze
       matematiche.
    3. È importante condurre lo studente ad acquisire il necessario rigore formale nell’apprendimento e nella
       sistemazione dei contenuti. È necessario un graduale adeguamento ai ritmi di lavoro e al metodo di
       organizzazione dello studio.
    4. Fondamentale è sicuramente l’educazione all’ascolto e all’attenzione e verificare costantemente la
       comprensione del testo
    5. Si riconosce l’opportunità di una lezione dialogata che dia ampio spazio agli interventi e nella quale
       l’insegnante guidi le intuizioni degli allievi e le riflessioni e consideri gli errori come strumento per
       apprendere e per far scaturire, in modo naturale, le relative definizioni e regole generali.
    6. Lavorare su situazioni problematiche nelle quali lo studente operi in prima persona, compiendo una
       ricerca individuale, ponendosi delle domande, facendo delle congetture, provandole e confrontandole,
       verificando le ipotesi fatte sulla base delle conoscenze già acquisite e infine formalizzando le conquiste
       fatte ( problem-solving).
    7. È importante la costruzione di algoritmi, di schemi, il suddividere il problema in sotto problemi di più
       semplice soluzione, riportandoli a situazioni già esplorate in precedenti esperienze.

Strumenti e metodi per la valutazione degli apprendimenti.

La valutazione non sarà vista come funzione scissa dal processo formativo o come momento separato di
verifica finale del prodotto dell'apprendimento, ma essa diventerà un momento fondamentale dell'itinerario
pedagogico-didattico nel suo complesso. L'analisi delle abilità raggiunte dagli allievi servirà per stabilire i
necessari accomodamenti dell'itinerario previsto.
Prima di ogni lezione frontale, si può verificare, con brevi e mirati quesiti, se sono stati fissati i contenuti portanti
della lezione precedente e/o se sono presenti i prerequisiti per affrontare l'argomento in programma. È utile
questo tipo di verifica, che si può ritenere formativa, perché è una verifica in itinere e costringe anche gli allievi
meno motivati nello studio, a lavorare con maggiore continuità.
Considerata la scansione “asimmetrica” dell’anno scolastico presso il nostro Istituto, si prevede di effettuare
almeno due verifiche scritte e una orale nel primo trimestre (che terminerà il 23/12/2021) e almeno tre e due
orali (di cui una potrà essere scritta sottoforma di test) nel pentamestre e avverranno comunque alla
conclusione di un modulo di apprendimento. Le interrogazioni orali saranno volte a valutare la capacità di
ragionamento e i progressi raggiunti nella chiarezza e nella proprietà di linguaggio, oltre che la conoscenza
dei contenuti e potranno essere svolte alla lavagna, con eventuali brevi verifiche scritte, con domande dal
posto; possono concorrere alla valutazione orale gli interventi spontanei degli alunni e il lavoro svolto a casa.
Vista l’attuale situazione di emergenza sanitaria causa Covid, sia il piano di lavoro che il numero di verifiche
programmate potranno subire sensibili variazioni, pur confermando che la valutazione sommativa venga fatta
con un congruo numero di verifiche.
Per le verifiche scritte saranno somministrate prove a vari livelli di complessità per consentire a ciascun
ragazzo di dare risposte adeguate alle proprie capacità.
Per eventuali studenti in DDI la verifica potrà essere inviata su classroom e dovrà essere restituita nello stesso
strumento di Google, oppure potrà essere somministrata al loro ritorno a scuola. Per la correzione si procederà
assegnando un punteggio ad ogni esercizio e partendo dalla valutazione massima che sarà dieci, a quella
minima che sarà due (uno solo nel caso in cui lo studente rifiuta di sostenere la prova) si utilizzerà una formula
matematica per dare tutti i voti; verrà tolto parte del punteggio a seconda della gravità dell’errore.
In fase di valutazione intermedia/finale sarà sempre presa in dovuta considerazione la partecipazione alle
attività didattiche sia in presenza che in DDI, il livello di competenza rispetto agli obiettivi, l’impegno scolastico
e domestico e i progressi o regressi registrati nel corso dell’anno scolastico così come previsto nel Piano
dell’Offerta Formativa di Istituto.

Strumenti didattici utilizzati (libri di testo in adozione, testi consigliati, dispense del docente,
manuali tecnici, materiale per la didattica laboratoriale ecc.)

Riferimento essenziale resta il libro di testo adottato: MATEMATICA. VERDE 2ED. – CONFEZIONE 4, (LDM)
VOL 4A + VOL 4B         Massimo Bergamini Graziella Barozzi       Ed. Zanichelli

e

MATEMATICA. VERDE 2ED, VOL. 5 (LDM)                      Massimo Bergamini Graziella Barozzi           Ed. Zanichelli

che vengono utilizzati sia per proporre esercizi/problemi, sia per la sistematizzazione teorica degli argomenti
affrontati; ad esso vengono affiancati:
     - esercizi tratti da testi differenti
     - esercizi recuperabili tramite internet e da siti contenenti strumenti didattici (si veda a titolo di esempio
         il sito della Zanichelli)
     - materiale allegato su classroom ( ad ex le lezioni del giorno sulla lim, sintesi, tabelle mappe ecc)

In Caso di attivazione di DDI si farà riferimento anche al modulo compilato e inviato via mail nella sezione del
sito denominata “METODOLOGIE E INNOVAZIONE PER LA DAD (DIDATTICA A DISTANZA) E
L’APPRENDIMENTO”. Tale documento sostanzia una programmazione disciplinare in forma essenziale per
classi parallele cui attenersi in caso di nuovo lockdown e per le classi con allievi in DDI.

Strumenti didattici utilizzati (libri di testo in adozione, testi consigliati, dispense del docente,
manuali tecnici, materiale per la didattica laboratoriale ecc.)

Per quanto riguarda le attività di recupero e gli interventi didattici integrativi si fa esplicito riferimento a quanto
previsto nel Piano dell’Offerta Formativa di Istituto.
In accordo col Consiglio di Classe si potranno attivare quelle tipologie di intervento (Help, lezioni tematiche,
studio assistito, recupero in itinere, pausa didattica tenendo conto delle opportune modalità legate
all’emergenza sanitaria in atto) che si ritengono più utili e adeguate alla situazione didattica del gruppo classe
o di piccoli gruppi di allievi in difficoltà. Resta comunque ferma l’idea che gli interventi che richiedono spazi di
lavoro pomeridiani e che comportano quindi un costo per l’Istituto, siano destinati ad alunni che dimostrino
buona volontà e impegno assiduo nel lavoro in classe e nelle attività da svolgere a casa. All’inizio del
pentamestre, dopo un breve ripasso degli argomenti svolti nel primo periodo seguirà una verifica per gli allievi
che hanno ottenuto una valutazione insufficiente nel primo trimestre; tale prova sarà considerata come verifica
per il recupero dell’insufficienza e voto a tutti gli effetti per il secondo periodo.
Eventuali altre attività (progetti specifici, forme di apprendimento di eccellenza per gruppi di
allievi, sperimentazione di didattiche alternative, moduli specifici e strumenti compensativi per
allievi DSA/BES/Disabili…)

Verranno svolte prove comuni di alcuni moduli didattici per classi parallele 5B e 5C (il docente della 5C è Il
Prof. Gasperoni Matteo) per garantire agli alunni l’offerta di pari opportunità formative.
Si avrà cura inoltre di predisporre eventualmente moduli specifici di apprendimento per alunni H-DSA-BES
facendo riferimento ai PDP e PEI personali, e forme didattiche di valorizzazione dei percorsi individuali sia in
senso premiale che di supporto per allievi con difficoltà di apprendimento.
.

Sviluppo di contenuti (da svolgere in orario curricolare) funzionali ai percorsi e alle iniziative
PCTO (ex ASL) programmate nel/i consiglio/i di classe di pertinenza.

All’interno di ogni modulo verranno sviluppate, ove è possibile, U.d.A. attraverso la risoluzione di problemi di
realtà e modelli volte a potenziare quelle competenze utili per il percorso di PCTO

Sviluppo di contenuti inerenti l’insegnamento dell’Educazione Civica

                                                                          Monte ore dedicato      1/2 ore

Contestualizzazione degli argomenti affrontati e modelizzazione di problemi anche in un’ ottica di preparazione
all’Esame di Stato.
Non saranno previste verifiche specifiche su tali argomenti atte ad ottenere valutazioni, m si valuteranno
impegno e partecipazione.

Il piano di lavoro potrà subire variazioni in corso d’anno anche in base a come si evolverà l’emergenza
COVID19.

Savignano s/R, 30/10/2021                                                 L’insegnante   Loretta Bettini
Puoi anche leggere