Il valore della diversità
←
→
Trascrizione del contenuto della pagina
Se il tuo browser non visualizza correttamente la pagina, ti preghiamo di leggere il contenuto della pagina quaggiù
Il valore della div SOSTENIBILITÀ ED ECONOMIA CIRCOLARE SONO LA PANACEA PER LE SFIDE DEL SISTEMA AGROALIMENTARE VERSO IL 2030? Francesco Caracciolo - Sezione di Economia e Politica Agraria Antonella Vastola 18 Settembre 2019 Sezione di Economia e Politica Agraria 24 Giugno 2020 antonellapalmina.vastola@unina.it Il valore della diversità
TEMI DELL’INTERVENTO Sostenibilità e economia circolare: Misurabilità Sfide e opportunità per il sistema ambito di applicazione, similitudini agroalimentare e differenze
Agriculture plays a critical ... growing faster than you realize Demand for agricultural production over the next 30 years As a result, agriculture emissions are likely to increase role in limiting the impact of will likely be shaped by two primary factors: Population reaching Per capita food 15–20% climate change consumption growth of ~10 billion 8–12% by 20503 agriculture sector accounts for a large, growing, and impactful share IThe ofNTRODUZIONE - Uemissions. global greenhouse gas (GHG) N ATTORE CRUCIALE PER L’IMPATTO SUL CAMBIAMENTO CLIMATICO ³ Assuming current levels of production efficiency. Agriculture is ... ... responsible for highly impactful emissions ... larger than you think Agriculture is a major emitter of Agriculture accounts for Methane (CH₄) Nitrous oxide (N₂O) Agriculture is one of the highest-emitting sectors. Cattle and dairy alone emit enough GHGs to put them Total GHG emissions by sector, % (20-year AR5 GWP values) on par with the highest-emitting nations. 45% of CH₄ 80% of N₂O 2016 GHG emissions by country (top three GHGs), GtCO₂e² emissions emissions Other Industry (20-year AR5 GWP values) 23.5 32.1 China 14 Cattle and dairy 8 Methane is the CH₄ is N₂O is 84× 264× Power and heat United States 8 second-largest 17.6 Agriculture¹ 26.8 Russia 5 contributor to climate more powerful than CO₂ in forcing temperature increases ¹ Including forestry, land use, fertilizer production, and electricity used in agriculture. ² Gigatonnes of equivalent carbon dioxide. change. over a span of 20 years. Major contributors to agriculture emissions include: ... challenging to address Policy makers are not focused on agriculture emissions. There are billions of farmers to engage. Enteric Manure Rice Fertilizer release On-farm Nitrogen fertilizer Deforestation fermentation cultivation and runoff energy use production Globally, one in four of agriculture emissions are people are farmers. Just 38% covered in nationally determined contributions (NDCs) under the Paris Agreement.⁴ ... growing faster than you realize ⁴ Analysis based on 46 countries (with the European Union counted as one country), Demand for agricultural production over the next 30 years As a result, agriculture emissions are likely to increase which contribute 90 percent of global agricultural emissions. will likely be shaped by two primary factors: New farm practices and technologies need to reach Billions of people need to change their behavior. small-scale farms around the world. Population reaching Per capita food 15–20% Average global 1/3 consumption growth of Almost by 20503 consumption of red ~10 billion 8–12% meat is 3× 75% of farms are smaller than three soccer fields. ³ Assuming current levels of production efficiency. of all food produced in the world is wasted. the recommended level. ... responsible for highly impactful emissions Agriculture is a major emitter of Agriculture accounts for All told, reducing agriculture emissions will require changing how we farm, what we eat, Methane (CH₄) Nitrous oxide (N₂O) and how we manage our forests and natural carbon sinks. 45% of CH₄ 80% of N₂O Daniel Aminetzah is a senior partner in McKinsey’s New York office; Eric Bartels is a partner in the Zurich office; Nicolas Denis is a partner in the Brussels office; Kimberly Henderson is a partner in the Washington, DC, office; Joshua Katz is a partner in the Stamford office; and Peter Mannion is a consultant in the Dublin office. emissions emissions Sources: “Understanding global warming potentials,” Environmental Protection Agency, epa.gov; Climate change 2013: The physical science basis, Intergovernmental Panel on Climate Change, 2013, ipcc.ch; Fifth assessment report, Intergovernmental Panel on Climate Change, ipcc.ch; Rita Strohmaier et al., The agriculture sectors in the intended nationally determined contributions: Analysis, Food and Agriculture Organization of the United Nations, 2016, fao.org; Dave Reay et al., “Global agriculture and nitrous oxide emissions,” Nature Climate Change, May 2012, Volume 2, pp. 410–16; “Growing at a slower pace, world population is expected to reach 9.7 billion in 2050 and could peak at nearly 11 billion around 2100,” United Nations, June 17, 2019, un.org; FAOSTAT, Food and Agriculture Organization of the United
Doppia 3 paradossi insostenibili ITA.pdf 1 05/11/2012 19:02:32 TRE PARADOSSI DEL NOSTRO TEMPO SU CIBO E NUTRIZIONE INTRODUZIONE - I PARADOSSI DEL TERZO MILLENNIO SU CIBO E NUTRIZIONE L’ANALISI DEGLI SCENARI GLOBALI DEL NOSTRO TEMPO E LA LORO CONTINUA E RAPIDISSIMA EVOLUZIONE METTONO IN EVIDENZA UN MONDO SEGNATO DA INSOSTENIBILI PARADOSSI MORIRE PER FAME OB ESE O IN SOV R DECESSI E DENUT E O PER OBESITÀ? OGGI RS ON R NEL MONDO AP N 1 SO PE 868 1,5 IT PE PER E NEL SO Oggi nel mondo per ogni persona malnutrita, ce ne sono due che OGNI ANNO sono obese o in sovrappeso. MONDO milioni miliardi PER CARENZA DI CIBO 36 ECCESSO DI CIBO PER OGNI PERSONA DENUTRITA 29 CI SONO DUE PERSONE OBESE milioni milioni O IN SOVRAPPESO NUTRIRE C PERSONE, ANIMALI, LA PRODUZIONE DI CEREALI NEL MONDO E IL LORO UTILIZZO* 2 M OGGI 2020 Y O AUTOMOBILI? OGGI 2020 +17,3% -3,9% ALIMENTAZIONE CM Un terzo dell'intera produzione 47,4% 45,6% UMANA alimentare globale è destinato MY CY alla nutrizione del bestiame, mentre 2,245 miliardi t 2,633 miliardi t CMY una quota crescente di terreni agricoli è destinata alla produzione di biocarburante: stiamo alimentando MANGIMI +2,1% K 32,9% 33,6% le nostre automobili invece che le nostre persone. POPOLAZIONE ANIMALI OGGI 2020 *Ripartizione dell’utilizzo di cereali in percentuale tra alimentazione +10% +15% 6,6% 7,6% BIOCARBURANTI animale, alimentazione umana e produzione di biocarburante 7 miliardi 7,7 miliardi ALIMENTARE LO SPRECO 1/3 DELLA PRODUZIONE 1,3 DI CIBO SPRECATO IL SALDO DEL PIANETA 3 O SFAMARE ANNUA MONDIALE miliardi t È IN ROSSO OGGI DI CIBO GLI AFFAMATI? Oggi quello che viene consumato è maggiore 1,5 Ogni anno nel mondo sono sprecate 1,3 miliardi di tonnellate di cibo, FINISCE NELLA 4 VOLTE di quanto si riesce pianeti ancora perfettamente commestibile, SPAZZATURA LA QUANTITÀ NECESSARIA a rigenerare. mentre 868 milioni di persone PER NUTRIRE GLI 868 milioni soffrono la fame. Per continuare a condurre DI AFFAMATI lo stile di vita attuale 2050 avremmo bisogno di 1,5 pianeti. 3 Tra quarant’anni ne pianeti servirebbero 3 Fonte: Elaborazione BCFN su dati OECD/FAO 2011; OMS 2010; GLOBAL FOOTPRINT NETWORK 2012
FIXING FOOD 2018 BEST PRACTICE PER RAGGIUNGERE GLI OBIETTIVI DI SVILUPPO SOSTENIBILE ORIZZONTE TEMPORALE: 2030 E OLTRE …. AGENDA ONU 2030 PER LO SVILUPPO SOSTENIBILE GLOBALE – 17 SDGS Il 2030 è un orizzonte temporale: ü di medio periodo per poter attuare strategie efficaci; ü di breve/brevissimo periodo per agire con misure per tenere sotto controllo i danni al clima del pianeta. Entro il 2050: Ø ONU - obiettivo zero emissioni; Redatto da Ø Europa - armonizzazione degli interventi nei diversi settori strategici garantendo l’equità sociale. ACCORDO DI PARIGI (2019) I limiti nazionali fissati (NDCs) non sono sufficienti per raggiungere gli obiettivi (GHGs) stabiliti per il 2030.
La sostenibilità Antonella Vastola Editor The Sustainability of Agro-Food and Natural Resource Systems in ■ Nel 1987, la Commissione Brundland (UN) giunse alla conclusione the Mediterranean che lo sviluppo mondiale doveva cambiare e diventare più Basin sostenibile per evitare che il divario tra i paesi industrializzati e quelli in via di sviluppo si ampliasse ancora di più. ■ Lo sviluppo sostenibile è un processo finalizzato al raggiungimento di obiettivi di miglioramento: – ambientale: biodiversità, ecosistemi, spazi pubblici … – economico: crescita economica, salari, posti di lavoro … – sociale: qualità della vita, sicurezza, salute … ■ E’ un processo che risponde alle esigenze del presente senza compromettere la capacità delle generazioni future di soddisfare le proprie.
La transizione verso la sostenibilità § Paradossalmente, la consapevolezza di uno sviluppo che tenga conto delle istanze delle generazioni future coincide con un periodo di scelte economiche neoliberiste: – globalizzazione dei mercati finanziari, deregolamentazione dei sistemi bancari, incremento delle tecnologie IT, delocalizzazione delle produzioni; incremento dei consumi per beni non di prima necessità, un uso eccessivo delle risorse naturali e un’inefficace risposta al riscaldamento globale e all’ingiustizia sociale i termini di ripartizione della ricchezza. § Con la crisi economica globale del 2008, gli stakeholder (imprese, politici, organismi internazionali, Ong …) maturano la consapevolezza di azioni per la transizione verso la crescita sostenibile. § Le scelte politiche, economiche, tecniche sono molteplici (Sustainability Transitions Research Network; Markard et al.) e utilizzano strumenti/azioni: § tra loro sinergiche § che si sovrappongono § che sono complementari che prese singolarmente rappresentano solo una parte della soluzione
Green, circular, bio economy: A comparative analysis of sustainability avenues | Elsevier Enhanced Reader 27/02/20, 10:50 La narrativa della transizione: economia verde, economia Green, circular, bio economy: A comparative analysis of sustainability avenues | Elsevier Enhanced Reader 27/02/20, 10:50 circolare e bio economia Green, circular, bio economy: A comparative analysis of sustainability avenues | Elsevier Enhanced Reader 27/02/20, 10:50 ü La green economy è un concetto «ombrello» che cerca di conciliare obiettivi ambientali e sociali. ü Economia circolare e bio economia si focalizzano su uso delle risorse: ü Economia circolare: come si usano le risorse ü Bio economia: quali risorse sono utilizzate
Attualmente, la ricerca si orienta principalmente nell’analisi e applicazione di soluzioni tecniche rivolte ad un livello di decoupling relativo rispetto alla crescita associata. E’ auspicabile che si individuino soluzioni che impiegano meno risorse in termini assoluti, rispetto alla corrispondente crescita. Criticità: 1. Soluzioni tecniche proposte dipendono ancora dall’uso di risorse fossili. 2. Basso impatto sociale/etico e marginale rispetto alle soluzioni proposte (eg. sviluppo A comparative analysis of sustainability avenues | Elsevier Enhanced Reader locale, creazione di lavoro, educazione …) 27/02/20, 10:50 3. Impatto sugli individui e le comunità locali i cui mezzi di sostentamento dipendono ancora da tecniche agronomiche/energetiche di tipo convenzionale. https://reader.elsevier.com/reader/sd/pii/S095965261732042…06CE6F0FF0367CDCA291F51A8E8BC9479942CE8FB7832FA2C4E4308DE0 Pagin https://reader.elsevier.com/reader/sd/pii/S095965261732042…06CE6F0FF0367CDCA291F51A8E8BC9479942CE8FB7832FA2C4E4308DE0 Pagin
AN EMPIRICAL ANALYSIS OF THE DECOUPLING EFFECT IN ITALIAN AGRICULTURAL WASTE Vastola, A. e Grippo, V. (in fase di sottomissione) OBIETTIVO UE – La riduzione della produzione di rifiuti senza ridurre la crescita economica. Ø fissati dei target di riduzione dei rifiuti prodotti per unità di PIL per raggiungere un disaccoppiamento assoluto tra produzione di rifiuti e crescita economica. -5% per i rifiuti non pericolosi -10% per i rifiuti pericolosi In Italia si producono ogni anno circa 12 milioni di tonnellate di scarti agro-alimentari, di cui circa 2/3 Risultati: sono la frazione organica. 1. un effetto di disaccoppiamento relativo della produzione di rifiuti dal prodotto interno lordo (PIL). L’analisi vuole verificare qual è la fase di 2. Esiste una relazione inversa tra: produzione di rifiuti e valore disaccoppiamento della produzione di rifiuti aggiunto e in particolare quello della produzione agricola di origine agricola dal PIL. biologica. 3. E’ importante promuovere attività produttive più efficienti e sostenibili rispetto all'uso delle risorse naturali per accelerare l'effetto decoupling.
E’ CIRCOLARE NON LINEARE …
Perché circolare … Sfera biologica Sfera tecnologica ■ E’ rappresentata dai cicli fondamentali per la ■ Simbiosi industriale: alcune aziende vita sul pianeta: acqua, ossigeno atmosferico utilizzano lo scarto della produzione di altre etc. Ogni ciclo biologico è un flusso che come risorsa (input) riuso interagisce con l’attività umana. ■ Economia dei servizi: si lavora per rallentare ■ Normalmente, i cicli possono convivere con il i cicli di utilizzo in modo da ritardare la cambiamento ma è il tasso di cambiamento il produzione di rifiuti riciclo problema cruciale. ■ Riciclo e riuso sono concetti che ■ L’economia circolare si impegna a gestire i appartengono alla sfera della sostenibilità. flussi entro i loro livelli naturali riducendo: – la rimozione di materiale da un ciclo; – il rilascio di materiali in un ciclo.
SOSTENIBILITÀ E ECONOMIA CIRCOLARE: SIMILITUDINI E DIFFERENZE
764 SIMILI … M. Geissdoerfer et al. / Journal of Cleaner Production 143 (2017) 757e768 Table 2 Sustainability was originally co Selected similarities between sustainability and the Circular Economy. all three dimensions as equal a Similarities between sustainability and the Circular Economy interventions should be priorit ! Intra and intergenerational commitments ences. For instance, it is conce ! More agency for the multiple and coexisting pathways of development and industrial interventions wit ! Global models rich countries like Sweden, and ! Integrating non-economic aspects into development countries like Zambia. ! System change/design and innovation at the core The literature also assumes d ! Multi-/interdisciplinary research field ! Potential cost, risk, diversification, value co-creation opportunities became institutionalised. Whil ! Cooperation of different stakeholders necessary framing (e.g. Brundtland, 1987) ! Regulation and incentives as core implementation tools contexts and aspirations, the C ! Central role of private business, due to resources and capabilities nomic and environmental ben ! Business model innovation as a key for industry transformation ! Technological solutions are important but often pose implementation (e.g. Rashid et al., 2013). problems There is also a difference standing of the agents that shou M. Geissdoerfer et al. / Journal of Cleaner Production 143 (2017) 757e768 agency is diffused in the case incentive structures. Private business plays a central role among 2015), as the priorities should ese and other sustainability relevant issues, the concept stakeholders of it way because that conserves commands andof theCircular the functions more capabilities Economy has earth's ecosystems (ISOa clear em nomy e while notresources entirely new thaneany hasotherrecently 15392, actor. Since the2008), a transformation implementation of human of more panies (e.g. lifestyle Webster, that optimises2015). ce on the agendas of policymakers (Brennan et al., the likelihood that living conditions will continuously support Furthermore, the se- timeframe sustainable solutions seems to lag behind expectations and tech- mes evident, for instance, in the comprehensive curity, well-being, and health, particularly bothby maintaining concepts. the The temporal di nological capabilities and advances in material and production ar Economy package (European Commission, 2015) supply of non-replaceable goods and services ended,(McMichael et be as goals can al., constan technology are becoming e Circular Economy Promotion Law (Lieder and ever more incremental, authors increas- 2003), or an indefinite perpetuation of all life formsthere (Ehrenfeld, ingly see business model innovation as the key pathway to the In contrast, are theoretica he Circular Economy has also become an impor- 2010).
… MA NON TROPPO M. Geissdoerfer et al. / Journal of Cleaner Production 143 (2017) 757e768 765 Table 3 Selected differences between sustainability and the Circular Economy. Sustainability Circular Economy Origins of the term Environmental movements, NGOs, non-profit and Different schools of thought like cradle-to-cradle, regulatory implementation intergovernmental agencies, principles in silviculture and by governments, lobbying by NGOs like the EMF, inclusion in political agendas, cooperative systems e.g. European Horizon 2020 Goals Open-ended, multitude of goals depending on the Closed loop, ideally eliminating all resource input into and leakage out of the considered agent and her interests system Main motivation Diffused and diverse reflexivity and adaptive/ past Better use of resources, waste, leakage (from linear to circular) trajectories What system is prioritised? Triple bottom line (horizontal) The economic system (hierarchical) To whose benefit? The environment, the economy, and society at large. Economic actors are at the core, benefitting the economy and the environment. Society benefits from environmental improvements and certain add-ons and assumptions, like more manual labour or fairer taxation How did they Providing vague framing that can be adapted to different Emphasising economic and environmental benefits institutionalise (wide contexts and aspirations. diffusion)? Agency (Who influences? Diffused (priorities should be defined by all stakeholders) Governments, companies, NGOs Who should influence?) Timeframe of changes Open-ended, sustain current status “indefinitely” Theoretical limits to optimisation and practical ones to implementation could set input and leakage thresholds for the successful conclusion of the implementation of a Circular Economy Perceptions of Responsibilities are shared, but not clearly defined Private business and regulators/policymakers responsibilities Commitments, goals, and Interest alignment between stakeholders, e.g. less waste is Economic/financial advantages for companies, and less resource consumption interests behind the use good for the environment, organisational profits, and and pollution for the environment of the term consumer prices M. Geissdoerfer et al. / Journal of Cleaner Production 143 (2017) 757e768 necessary or sufficient condition or how it relates to other concepts dimensions could be added to the concept of the Circular Economy. and other sustainability issues, that could foster the concept of sustainability. way that conserves Table the 4functions provides an of the earth's overview ecosystems of the different (ISO types of relation- Differently,new my e while not entirely Bocken e ethas al. (2014) identified 15392, recently circularity 2008), ships between sustainability as one a transformation of human and lifestyle the Circularthat Economy that were optimises archetype of sustainable business models among others. Circularity identified in the research. These categories aim at stressing the on the agendas of policymakers (Brennan et al., the likelihood that living conditions will continuously support se- is seen as one of several options to foster the sustainability of the most evident differences identified within our sample. It is none- s evident, for instance, in the comprehensive curity, well-being, system. These options are all seen as beneficial in principle and can and health, particularly by maintaining the theless important to stress that this table does not aim to be conomy packagealso(European be combined Commission, to add up gains2015) supply Similarly, or achieve synergies. of non-replaceable goods exhaustive, as and ofservices each type (McMichael relationship et al., could be further sub- ircular EconomyEvansPromotion Law et al. (2009) and (Lieder Weissbrodand and Bocken2003), (2017) or an indefinite describe perpetuation categorized of be and consequently allinvestigated life forms (Ehrenfeld, in more depth.
766 CHE TIPO DI RELAZIONE C’È … M. Geissdoerfer et al. / Journal of Cleaner Production 143 (2017) 757e768 Table 4 Relationship types between the Circular Economy and sustainability. General Type of relationship Short description Circularity/closed loop systems are seen as … Examples in literature Graphical direction representation Conditional Conditional relation One of the conditions for a sustainable system La €pple, 2007 Rashid et al., 2013 Strong conditional relation The main solution for a transformation to a sustainable system Bakker et al., 2014 EMF, 2013b UNEP, 2006 Necessary but not sufficient A necessary but not sufficient condition for a sustainable system Nakajima, 2000 conditional relation Beneficial Beneficial relationship Beneficial in terms of sustainability, without referring to condition-ality or European alternative approaches Commission, 2014 Subset relation (structured and One among several solutions for fostering a sustainable system Allwood et al., 2012 unstructured) Bocken et al., 2014 Evans et al., 2009 Garetti and Taisch, 2012 Seliger, 2007 Weissbrod and Bocken, 2017 Degree relation Yielding a degree of sustainability with other concepts being more and/or OECD, 2009 less sustainable Trade-off Cost-benefit/trade-off relation Having costs and benefits in regard to sustainability, which can also lead to Allwood, 2014 negative outcomes Andersen, 2007 Selective relation Fostering certain aspects of sustainability but lacking others Murray et al., 2015 M. Geissdoerfer et al. / Journal of Cleaner Production 143 (2017) 757e768 benefits through input reduction, efficiency gains, and waste would propose this, as well as other work exploring the multiple avoidance with e and other sustainability relatively issues, the immediate concept results of compared waytothat sustain- dimensions conserves theoffunctions sustainable business of the models (e.g., Boons earth's et al., 2013; (ISO ecosystems ability (e.g. EMF, 2013b; Elkington, 1997). Differently from sus- Geissdoerfer et al., 2016a) as a good base for future research and my e while nottainability, entirelylong-term new eviability has recently 15392, 2008), apractice. seems to be excluded from most transformation of human lifestyle that optimises In this way, environmentally focused approaches to CE, on the agendas of policymakers discussions (e.g. EMF, (Brennan 2013b; Brundtland, the likelihood et al.,1987). Furthermore, the that living like the work byconditions Allwood et al. will (2012)continuously support and Bakker et al. (2014), can se- es evident, for instance, in the comprehensive behaviour of organisational actors and curity, well-being, and health, particularly by maintaining the consumers should be be complemented with concepts that take a more holistic stake- nudged with incentives in the Circular Economy, while many sus- holder view e and especially social considerations e into account. conomy package (European Commission, 2015) supply of non-replaceable goods and services (McMichael et al., tainability approaches favour behaviour change through engage-
RIPENSANDO ALLE FILIERE
Zero alternative Biogas Paper Feed tion equit Environmental 0.237 0.376 0.181 0.113 Circularity 0.338 0.200 0.310 0.337 2013 Technical 0.049 0.208 0.116 0.222 circu Social 0.239 0.051 0.061 0.060 prom Economic 0.137 0.164 0.331 0.268 opme Natural Resources Research (! 2019) https://doi.org/10.1007/s11053-019-09457-w sults, Original Paper circu Environmental 0.80 prov Multi-criteria Evaluation of Bran Use to Promote Circularity 0.60 also in the Cereal Production Chain stake 0.40 Zero-alterna!ve Economic Circularity as a Valeria Grippo,1,3 Severino Romano,1,2 and Antonella Vastola1 0.20 Biogas proje 0.00 Paper the u Produzione Received 29 May 2018; accepted 16 January 2019 Feed Cereal production, as well as other agricultural activities, has a relevant impact on the the u environment contributing to produce negative externalities. Furthermore, it is wasteful, prefe Consumo increasing the pressure on the environment, without any utility, and reducing the economic performance of producers. This is particularly evident in regions, like Basilicata and Puglia the t (located in Southern Italy), where cereal production represents an important quota of re- Social Technical Molitura Crusca gional economy. In order to reduce waste, it is necessary to redefine the cereal production chain, to improve its efficiency and to reduce the ecological footprint of the production, prod helping, at the same time, farmers to improve their economic performance. Bran is an output of cereal production that is generally wasted; however, it can be used as an input to other Figure 4. Comparison between the criteria value of each with Trasporto production chains. Finding new market opportunities for bran can be a successful strategy to Diffe promote circularity of the cereal chain achieving a better balance between social, environ- alternative. Trasformazione mental and economic aspects. To promote a circular production pattern, this study evaluated three different alternative projects for bran use (i.e., paper production, biogas and feed), by using multi-criteria analysis as a tool for local authorities to evaluate projects promoting circular economy. Involving all representative stakeholders of the cereal production chain, Ø Nell’area di studio sono prodotte circa 200.000 t di the results show ability to achieve the best solution (in this case the biogas one) in order to increase bran utility, implementing the sustainable development of rural areas. 0.5 Tutte le alternative sono preferibili all’alternativa zero. crusca (rifiuto agro-industriale non KEY WORDS: Circular economy, pericoloso Multi-criteria CER 02). analysis, Rural development, Bran uses. L’uso di crusca per produrre biogas è l’alternativa Ø Lo smaltimento in discarica è l’alternativa più utilizzata preferita. Seguita da quella per la produzione di carta 0.4 eINTRODUCTION quindi rappresenta l’alternativacountries, zero a(business as further 120 million hectares of natural mentre il reimpiego nella mangimistica è il meno usual). habitats will be converted to farmland to cover food preferito. In this millennium, one of the main challenges demand by 2050 (FAO 2009). for the agri-food system is to satisfy the growing Globally, one-third of the food is wasted or lost 0.3 Ø Ricavo potenziale dalla vendita della crusca. food demand while maintaining the preservation and protection of the environment. Today, ! 34% before people consume it, contributing to increasing the ecological footprint of the agricultural system Ø Costo opportunità del non smaltimento. of global land is used for agriculture (FAOSTAT 2017) and has been estimated that, in developing without producing any utility (FAO 2011). In European countries, the main sectors contributing to 0.2 1 Ø Vendita di un prodotto finito a più alto valore aggiunto (es. CartaCrusca è la prima carta di pregio food waste are households (domestic use) (! 47 Mt) and processing (! 17 Mt) (! 11% of the food is realizzata dalla crusca non più utilizzabile per il consumo alimentare. School of Agricultural, Forests, Food and Environmental Sci- wasted during the production phase), while ! 9 Mt ences, University of Basilicata, Viale dell!Ateneo Lucano 10, 85100 Potenza, Italy. of food loss comes from primary production (Sten- 2 Trees and Timber Institute, National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy. marck et al. 2016) with negative effects for food security and environmental protection. In fact, the 0.1 3 To whom correspondence should be addressed; e-mail: waste of food has an associated waste of water and valeria.grippo@unibas.it waste fertilizer that cause reduction in soil quality. 0 ! 2019 International Association for Mathematical Geosciences Zero-alterna!ve Biogas Figure 5. WLC values per a
MISURABILITÀ
COME SI MISURA LA SOSTENIBILITÀ DI UN PRODOTTO I TRE INDICATORI AMBIENTALI Misurano l’impatto di ogni prodotto ■ Nelle filiere alimentari, i principali lungo il ciclo di vita carichi ambientali provengono da: – le emissioni di gas serra Coltivazione Trasformazione Imballaggio Trasporto Cottura – l’uso dell’acqua Esempio Carbon Esempio – l’ impiego del suolo. A 1 kg Footprint 1 kg B Misura le emissioni di carne rossa di gas serra di pomodori ■ Il metodo d’analisi del ciclo di vita (Life 26 kg CO2 eq UNITÀ DI MISURA 1,1 kg CO2 eq Cycle Assessment, LCA) stima gli massa di CO2 equivalente impatti ambientali legati alle diversi Water fasi della vita un prodotto. Footprint Quantifica i consumi ■ Il metodo LCA calcola questi impatti 15.500 litri delle risorse idriche 214 litri utilizzando tre indicatori ambientali: UNITÀ DI MISURA volume (litri) di acqua – Impronta carbonica Ecological – Impronta idrica 109 global m2 Footprint 1,5 global m2 Calcola la quantità di terra/acqua – Impronta ecologica necessaria per rigenerare le risorse impiegate UNITÀ DI MISURA m2 o ettari globali
Contents lists available at ScienceDirect Land Use Policy journal homepage: www.elsevier.com/locate/landusepol A comparative multidimensional evaluation of conservation agriculture systems: A case study from a Mediterranean area of Southern Italy A. Vastola et al. Antonella Vastolaa,⁎, Pandi Zdrulib, Mario D’Amicoc, Gioacchino Pappalardoc, Mauro Viccaroa, Francesco Di Napolia, Mario Cozzia, Severino Romanoa Table 1 a b School of Agricultural, Forestry, Food and Environmental Science, University of Basilicata, V.le dell’Ateneo Lucano 10, 85100 Potenza, Italy International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), Mediterranean Agronomic Institute of Bari, Land and Water Resources Management Benefits and costs associated Department,toViaCA: Cegliedimensions 9, 7001 Valenzano of(BA), sustainability, Italy impact levels on private/public interest and area of incidence. Source: our elaboration.c Dipartimento di Agricoltura Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 98-100, 95123 Catania, Italy ARTICLE I NFO ABSTRACT Area of incidence Benefits/Costs Keywords: To avoid the current paradoxes of the global agro-foodDimensions of sustainability system it is necessary Impact to define and implement level a viable Global National/Regional Local Conservation agriculture systems agricultural sustainable model, combining satisfaction of food needs and land preservation. A possible solution Sustainable development can be found in a holistic production system consistent with a sustainable development model, designed to 1 Labour savings in perennial Viable crops Mediterranean agriculture Ec/So(CA) could be a part of this model, as1it includes a satisfy diverse “local” economies. The conservation agriculture x Economic assessment 2 Fuel savings in perennial crops set of best practices available to preserve agrarian soil and its biodiversity. Briefly, we cover the CA Ec/Env 3 background x in Europe followed by the evaluation of its impact in terms of private/public interest, using the sustainability’s 3 Cost-savings in annual crops metric. Ec 3 x 4 Increase of yields To test the viability of a model based on CA in “localEc/So 3 conditions”, we compare economic performance of x x x different conservation practices (i.e. minimum and no tillage) to that of conventional agriculture in a typical 5 Reduction of off-site problems Ec/Env 2 Mediterranean environment – Collina Materana – in Southern Italy (Basilicata region). Our findings suggest that: x x 6 Improvement of soil properties i) CA can actually be a viable alternative to conventionalEnv systems; ii) in Mediterranean agricultural3areas CA has x x 7 Increase of biodiversity yield advantages especially during dry years, when conservation Env techniques increase water supply2to crops; iii) x x public support is needed to direct farming choices in fact without financial incentives these practices would be 8 Less erosion Ec/Env not widely accepted and diffused; iv) European policy makers have to recognized the positive benefits 3 of CA and x 9 Less CO2 emissions pay them as ecosystem services in the framework ofEnv/So Good Agricultural Environmental Conditions and the x x x present CAP subsidies. 10 Increase of the CO2 sink effect of the soil Env/So 2 x x x 11 Less contamination of downstream water Env 2 x 12 Less floods and landslides Ec/Env 3 x 13 Less landscape diversity loss 1. Introduction the European farmers Ec/Env/So 3 climate could exploit to implement mitigation x x change policies, while achieving environmental, social and economic 14 Purchase of specialized planting equipment Ec −1 x Global agro-food outlook has been recently reshaped by two land- benefits. 15 Short-term pest mark problems due i.e. agreements, to the change inDevelopment the Sustainable crop management Goals (in 2012) and During the last Ec −1 decade, the Food and Agriculture Organization x 16 Farmer needs new the management skillsAgreement Paris Climate Change – requiring farmer’s 2015). (in November time commitment The chal- to learning (FAO) Ec Conservation Agriculture Federation and the European −1 (ECAF) x lenge is hunger eradication and fair exploitation of terrestrial ecosys- and experimentation have been developing and promoting techniques that allow to conserve tems keeping global warming below 2 °C by 2030. agrarian soil and its biodiversity, in the context of sustainable agri- 17 Application of additional herbicides Human activity has been the dominant cause of observed warming Ec/Env −3 culture; the set of best practices developed in this field is known as x x 18 Formation and operation of farmers’ since the mid-20th groups century. The last Intergovernmental Panel on Soc (CA). “conservation agriculture” −2 x x 19 High perceived risk to Change Climate farmers becausereport assessment of technological uncertainty confirmed that each of the last three The roots of this Ec production approach have to be found −1 in the USA – x x 20 Development of decades appropriate technical packages and training programmes in the 1930s – to combat has been successively warmer at the earth’s surface than any Ec/Sosoil desertification caused by wind and water 0 x x preceding decade since 1850 (IPCC, 2014). erosion (Holland, 2004). In the near future, this trend can be slowed only if a more sus- Conservation agriculture is defined by ECAF “as a sustainable Note: Ec=economic; Env = environmental; tainable So = social. 1 = positive impact on private growth path is undertaken. interest; agriculture 2 = positive production impact on system comprising a setpublic interest; of farming 3 = positive impact for both; 0 = no impact; practices −1 = negative impact on The adoption of soil conservation practices is one of the tools that private interest; −2 = negative impact on public interest; adapted to the requirements of crops and local conditions of each −3 = negative impact for both ⁎ Corresponding author. reached if a mix of viable business E-mail addresses: choices(A.and antonella.vastola@unibas.it public Vastola), policies pandi@iamb.it is im- 3. (P. Zdruli), mario.damico@unict.it The comparative (M. D’Amico), economic gioacchino.pappalardo@unict.it (G. Pappalardo),assessment of conservation tillage mauro.viccaro@unibas.it (M. Viccaro), francesco.dinapoli@unibas.it (F. Di Napoli), mario.cozzi@unibas.it (M. Cozzi), severino.romano@unibas.it (S. Romano). plemented. in a Mediterranean environment Given that crophttp://dx.doi.org/10.1016/j.landusepol.2017.07.034 performances Received arein revised 5 October 2016; Received evaluated from form 13 July 2017; measured Accepted 18 July 2017 crop yields, long-term reviews and field results lead to the conclusion that in 3.1. The case study of Collina Materana Europe: a) in general no-till gives crop yields within 5% higher of those obtained under conventional tillage, given the influence introduced by The investigated area is that of Collina Materana – in Southern Italy soil, crop and weather; b) increasing yield levels under drier conditions – in the province of Matera (Basilicata region), where high quality have been reported (Fernández-Ugalde et al., 2009); c) lower yields durum wheats used for pasta’s production are produced.
Ø Circulytics™ è un indicatore che misura il livello di circolarità raggiunto da un'azienda lungo tutto il processo produttivo. 1 11 222 Ø Lo score aziendale - da A+ a E - si basa sulla performance/capacità di due categorie: CATEGORY 1: ENABLERS CATEGORY 1: ENABLERS CATEGORY CATEGORY2:2:OUTCOMES OUTCOMES The critical The critical aspects to aspects to Measuring Measuring aa company’s company’s enableCATEGORY 1: ENABLERS company-wide CATEGORY circular 2: OUTCOMES inputs and enable company-wide transformation The critical aspects to circular outputsinputs Measuring and a company’s transformation enable company-wide outputs circular inputs and transformation outputs STRATEGY AND PLANNING INPUTS STRATEGY AND PLANNING Have youSTRATEGY placed circularity in the heart of AND PLANNING INPUTS AreINPUTS the materials and energy used in your your strategy? Have you placed circularity in the heart of business Are theprocesses supporting materials and a circular energy used in your Have you placed circularityyour in the heart of strategy? Are the materials economy? and energy business processes used supporting in your a circular your strategy? business economy? processes supporting a circular PEOPLE AND SKILLS PEOPLE AND SKILLS economy? OUTPUTS Have you employed the skills and people OUTPUTS PEOPLE AND SKILLS Have required to you employed transition the skills to a circular and people business Are the products and services you produce model? required to transition to a circular business Are the products supporting OUTPUTS and a circular services you produce economy? Have you employed the skills and people model? supporting a circular economy? Enablers: la capacità che un'azienda ha dito transition required to a circular business Are the products and services you produce SYSTEMS, PROCESSES AND INFRASTRUCTURE SYSTEMS, PROCESSES AND INFRASTRUCTURE cogliere le opportunità commerciali model? Have youHave invested sufficiently to support supporting a circular economy? you invested sufficiently to support dell'economia circolare nel futuro. the change? the change? Sono valutati indicatori che consentono unaPROCESSES AND INFRASTRUCTURE SYSTEMS, trasformazione a livello aziendale Have comeyou la invested INNOVATION INNOVATION Companies Companiesthat thatundertake this undertake this sufficiently to support Outcomes process processwill :receive è l'istantanea willreceive aa report featuring report featuring definizione delle priorità strategiche theechange? i Are you Are you innovating innovating systems new circular new circular or services? products, products, a circularityscore a della circularity score alongside circolarità alongside tailored tailored systems or services? insightsand andcommentary commentary from programmi di apprendimento interno insights fromthethe dell’azienda: Ellen Ellen MacArthurinput, MacArthur output Foundation.* Foundation.* INNOVATION EXTERNAL ENGAGEMENT Companies that undertake this EXTERNAL ENGAGEMENT e lavorazione dei materiali. process will receive a report featuring Are you promoting your circular initiatives and Are you innovatingAre new circular you promoting products, your circular initiatives and influencing influencing those in your business sphere such a circularity score *Depending alongside tailored *Depending on demand, we may limit analyst as those clients in oryour your business sphere such commentary to publicly traded companies and systems or services? supply chain? on demand, we may limit analyst insights and commentary from above athe companies above a certain size. commentary to publicly traded companies and as clients or your supply chain? companies certain size. Ellen MacArthur Foundation.* EXTERNAL ENGAGEMENT Are you promoting your circular initiatives and influencing those in your business sphere such *Depending on demand, we may limit analyst commentary to publicly traded companies and as clients or your supply chain? companies above a certain size.
adoption investors and customers about a company’s circular economy adoption - if the company chooses to Presents an opportunity to publish it become an inspiring case study for the Ellen MacArthur Foundation to promote Strategy and planning People and skills Systems, processes, infrastructure 18 Innovation External engagement ENABLERS INDICATORS THEMES CATEGORIES OVERALL SCORE 3–11 Inputs OUTCOMES Outputs (depending on industry) HOW IS THE SCORE CALCULATED? Companies are measured using a sum of weighted indicator scores resulting in an overall grade from A+ to E. The score card will provide tailored insights by theme.
Sfide Informazione Educazione Eticità e equità
INFORMAZIONE E CIBO ■ Senza ….. ■ Con aggiunta di … ■ Superfood ■ Environmental friendly ■ Cruelty free Ø I cibi “senza” o “con aggiunta di” tendono a essere preferiti e considerati più salutari (indipendentemente dalle effettive proprietà nutrizionali) da chi è maggiormente soggetto al potere persuasivo delle fake news (Università Cattolica del Sacro Cuore, 2020) Ø Reg. UE 432/12 e successivi, in merito alle indicazioni relative alla salute health claims autorizzate dalla Commissione europea a seguito del parere dell’Efsa.
CASO: OLIO DI PALMA SOSTENIBILE v L’Unione Italiana per l’Olio di Palma Sostenibile definisce l’olio di palma sostenibile come: Ø olio con origini conosciute e quindi tracciabili; Ø olio prodotto senza convertire foreste e nel rispetto degli ecosistemi ad alto valore di conservazione; Ø olio prodotto con pratiche colturali rispettose delle foreste ad alto valore di carbonio; Ø olio prodotto con pratiche agricole atte a preservare le torbiere; Ø olio non proveniente dalla conversione in piantagioni di aree sottoposte ad incendi volontari; Ø olio che protegge i diritti dei lavoratori, popolazioni e comunità locali, rispettando il principio del consenso libero, preventivo e informato; Ø olio che promuove lo sviluppo dei piccoli produttori indipendenti.
foodedu@school Rapporto di Ricerca 2018 Educazione
Eticità ed equità Trovare un impiego regolare nel settore agricolo, utilizzare gli strumenti in sicurezza, ottenere il giusto riconoscimento delle ore di lavoro, vivere in condizioni dignitose. • Riconoscimento del giusto prezzo a remunerazione dei fattori della produzione e in particolare del lavoro: ü Prezzo trasparente: evidenzia la quota di incidenza sul prezzo finale delle diverse componenti della filiera ü FairTrade: il prezzo che gli agricoltori ricevono non scende mai al di sotto del prezzo di mercato e non dipende dalle speculazioni in borsa. E’ calcolato in modo da coprire i costi necessari per una produzione sostenibile ü Prezzo Giusto: valore equo lungo le filiere, cooperazione a progetti sociali • Eticità - SA8000 ü il rispetto dei diritti umani, ü il rispetto dei diritti dei lavoratori, ü la tutela contro lo sfruttamento dei minori, ü le garanzie di sicurezza e salubrità sul posto di lavoro
Asimmetria informativa: • Quanto guadagna il - i consumatori ignorano trasformatore? spesso tutte le caratteristiche di ciò che • Quanto viene acquistano; retribuito il bracciante? - gli altri attori della filiera (GDO, industria, etc.) conoscono le abitudini dei consumatori.
Sostenibile e circolare … si può e si deve ■ Il piano europeo 11 marzo 2020 - La Commissione Europea ha presentato il piano di azione per l’economia circolare, che è uno dei pilastri del European Green Deal per una transizione verso un'economia climaticamente neutra entro il 2050. ■ Disaccoppiare: la crescita economica dall'utilizzo delle materie prime, incentivando il riciclo dei materiali. ■ Riduzione degli sprechi alimentari: riguarderà l’intera catena del valore alimentare per garantire la sostenibilità del settore. ■ Farm to Fork (F2F): è il piano decennale per guidare la transizione verso un sistema alimentare equo, sano e rispettoso dell’ambiente.
Suggerimenti per una bibliografia essenziale • Borrello M., Pascucci S., Cembalo L. (2020). Three Propositions to Unify Circular Economy Research: A Review. Sustainability 12(10). • D’Amato et al. (2017). Green, circular, bio economy: A comparative analysis of sustainability avenues. Journal of Cleaner Production. • Geissdoerfer M., Savaget P., Bocken N., Hultink E. (2017). The circular economy– A new sustainability paradigm? Journal of Cleaner Production. • Grippo V., Romano S., Vastola A. (2019). Multi-criteria evaluation of bran use to promote circularity in the cereal production chain. Natural Resources Research. • Köhler et al. (2019). An agenda for sustainability transitions research: State of the art and future directions. Environmental Innovation and Societal Transitions. • Schroeder, P. et al (2018). The relevance of circular economy practices to the sustainable development goals. Journal of Industrial Ecology. • Vastola A. (ed.) (2015) The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin. Springer Open. • https://www.ellenmacarthurfoundation.org
Invito al il prossimo Caffè Scientifico Prof. Riccardo Vecchio In laboratorio veritas: l’economia sperimentale per misurare le preferenze dei consumatori di vino 16 Settembre 2020 della diversità
Puoi anche leggere