Bachelor of Science SUPSI in Data Science and Artificial Intelligence
←
→
Trascrizione del contenuto della pagina
Se il tuo browser non visualizza correttamente la pagina, ti preghiamo di leggere il contenuto della pagina quaggiù
Dipartimento tecnologie innovative Bachelor of Science SUPSI in Data Science and Artificial Intelligence Piano di studio Tempo pieno Anno accademico 2020/2021 Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 1 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Calculus 1 Codice M-B1010E.1 Crediti 9.0 ECTS Semestre di riferimento 1° Durata 2 semestri Tipo di modulo Obbligatorio Responsabile modulo Rezzonico Rossetti Paola Corsi Ore SA Ore SP E-B1011E.1 Ex. Calculus 1 2.0 2.0 Totale ore settimanali: 2.0 2.0 Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 2 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Linear algebra 1 Codice M-B1020E.1 Crediti 6.0 ECTS Semestre di riferimento 1° Durata 2 semestri Tipo di modulo Obbligatorio Responsabile modulo Fontana Martina Corsi Ore SA Ore SP C-B1021E.1 Linear Algebra 2.0 2.0 E-B1021E.1 Ex. Linear Algebra 2.0 2.0 Totale ore settimanali: 4.0 4.0 Descrittivo dei corsi Linear Algebra Codice C-B1021E.1 Obiettivi Development scientific reasoning by means of abstraction Knowledge of matrix computation Ability of manipulating matrices Capacity of using proper tools for algebraic calculus, matrix manipulation and decomposition Contenuti Critical thinking Vectorial calculus Scalar, vectorial and mixed product Analytical geometry Matrices Linear applications and geometrical transformations Determinant Lab in Python Metodo di Interactive lessons with exercises. insegnamento Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 3 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Probability and Statistics Codice M-B1100E.1 Crediti 6.0 ECTS Semestre di riferimento 1° Durata 2 semestri Tipo di modulo Obbligatorio Responsabile modulo Corani Giorgio Corsi Ore SA Ore SP C-B1101E.1 Probability and Statistics 2.0 2.0 E-B1101E.1 Ex. Probability and Statistics 2.0 2.0 Totale ore settimanali: 4.0 4.0 Descrittivo dei corsi Probability and Statistics Codice C-B1101E.1 Obiettivi Knowledge of fundamentals notions of probability Knowldge of main probability distributions Capability of modelling simple probabilistic problems Knowledge of fundamentals methods for statistical inference Basic usage of R Ability of performing statistical tests and doing inference Ability of performing linear regression analysis Ability of evaluating linear regression performance Contenuti Combinatorics and set theory Measure theory and probability measure Random variables and random vectors Conditional probability and indipendence Bayes rule Univariate and multivariate distributions Descriptive statistics, position index dispertion index Exploratory data analysis Statistical inference: Maximum likelihood estimation) Tests and confidence intervals Simple linear regression and regression metrics (MAE, MSE, RMSE, Rsq) Overview of Bayesian inference Lab in R Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 4 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Numerical analyis and optimisation Codice M-B1110.1 Crediti 6.0 ECTS Semestre di riferimento 1° Durata 2 semestri Tipo di modulo Obbligatorio Responsabile modulo Barta Janos Corsi Ore SA Ore SP C-B1111.1 Numerical analysis and optimisation 2.0 2.0 E-B1111.1 Ex. numerical analysis and optimisation 2.0 2.0 Totale ore settimanali: 4.0 4.0 Descrittivo dei corsi Numerical analysis and optimisation Codice C-B1111.1 Obiettivi Knowledge of main numerical formats Knowledge of principal numerical methods Capability of solving mathematical problems by means of algorithms Capability of implementing numerical algorithms in python/R Contenuti Integer and real number representations Numerical methods for solving equations Linear system resolution methods Interpolation methods Numerical integration methods Introduction to optimization methods Lab in Python/R Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 5 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Inglese B2 Codice M-C1020.1 Crediti 6.0 ECTS Semestre di riferimento 1° Durata 2 semestri Tipo di modulo Obbligatorio Prerequisiti Conoscenze di inglese a livello B1 Metodo di valutazione Per la certificazione dei moduli di lingua valgono le specifiche direttive interne del Centro competenze lingue Osservazioni I livelli si riferiscono alle sei scale del Common European Framework del Consiglio d'Europa ripresi nella versione svizzera di un Portfolio europeo delle lingue (PEL). La verifica del livello richiesto dal dipartimento puo avvenire anche tramite equipollenza di determinati certificati internazionali riconosciuti dal Centro competenze lingue o dal superamento di esami prima dell'inizio del corso Responsabile modulo Losa Stefano Corsi Ore SA Ore SP C-C1021.1 Inglese B2 4.0 4.0 Totale ore settimanali: 4.0 4.0 Descrittivo dei corsi Inglese B2 Codice C-C1021.1 Obiettivi Acquisire e approfondire le competenze linguistiche che favoriscono l’inserimento nel mondo professionale in Svizzera e all’estero, con particolare attenzione all’ambito tecnologico Approfondire le capacità grammaticali e acquisire il lessico specifico per poter sviluppare conversazioni in diverse situazioni Sviluppare e approfondire le quattro competenze linguistiche: ascolto, lettura, espressione orale (conversazione / esposizione), espressione scritta, al fine di possedere un controllo della lingua appropriato, accurato e fluente. L’obiettivo dell’insegnamento della lingua è il raggiungimento di un livello intermedio avanzato Contenuti Verranno trattati temi, attinenti all’ambito tecnologico, lavorativo, sociale e culturale Metodo di Insegnamento comunicativo con discussioni, letture, esercitazioni in gruppo, insegnamento presentazioni orali, simulazioni La partecipazione alle lezioni è obbligatoria Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 6 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Communication and presentation Codice M-C1040.1 Crediti 2.0 ECTS Semestre di riferimento 1° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Carcano Cristina Corsi Ore SA Ore SP C-C1041E.1 Communication and presentation 2.0 - Totale ore settimanali: 2.0 - Descrittivo dei corsi Communication and presentation Codice C-C1041E.1 Obiettivi Develop communication skills to manage relationships and presentations to different stakeholders. Contenuti Public speaking Team working and soft skills First impressione and image Meeting and kick off Networking Negotiation Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 7 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Ethics and Artificial Intelligence Codice M-D1010.1 Crediti 4.0 ECTS Semestre di riferimento 1° Durata 2 semestri Tipo di modulo Obbligatorio Responsabile modulo Facchini Alessandro Corsi Ore SA Ore SP C-D1011.1 Introduction to Artificial Intelligence 2.0 - C-D1012.1 Ethics of Artificial Intelligence - 2.0 E-D1011.1 Ex. Introduction to Artificial Intelligence 1.0 - E-D1012.1 Ethics of Artificial Intelligence - 1.0 Totale ore settimanali: 3.0 3.0 Descrittivo dei corsi Introduction to Artificial Intelligence Codice C-D1011.1 Obiettivi Acquire basic knowledge on the theoretical basis of AI and machine learning, and know how the theory has been developed, Understand and explain the concepts, principles, strengths and limitations of the two main kinds of knowledge representation: the logic/symbolic approach and the subsymbolic/connectionist approach. Understand and explain the main differences between the major kinds of machine learning problems, namely supervised learning, unsupervised learning and reinforcement learning Contenuti Brief history of Artificial Intelligence What is an intelligent agent GOFAI: - solving by search - knowledge representation and reasoning (logic); - limitations (frame problem etc) Connectionism: - what is a neural network, - training a network (basic ideas), - limitations First concepts (overview) of machine learning - types and models - use in Data Science Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 8 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Ethics of Artificial Intelligence Codice C-D1012.1 Obiettivi Understand the motivations for designing intelligent machines and their implications. Understand and explain some possible ethical and societal impacts of AI and machine learning Contenuti The course treats of ethical issues surrounding the development of ArtificiaI Intelligence: - Can machine acts intelligently? Who is responsible for their actions? - What are the risks of developing AI? Do we have to give up privacy to innovation? How can bias in algorithm be prevented? - Machines with moral status: can AI be made more ethical? - Can and should AI be regulated? Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 9 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Operating environments Codice M-I1030E.1 Crediti 4.0 ECTS Semestre di riferimento 1° Durata 2 semestri Tipo di modulo Obbligatorio Responsabile modulo Mastropietro Roberto Corsi Ore SA Ore SP C-I1031E.1 Operating environments 1.0 1.0 E-I1031E.1 Ex. operating environments 1.0 1.0 Totale ore settimanali: 2.0 2.0 Descrittivo dei corsi Operating environments Codice C-I1031E.1 Obiettivi Understand the architecture of a computer, the basic components of an operating system, command-line tools to manage files and to perform processing tasks on local and remote data. Contenuti Introduction to computer architecture and operating systems The Bash shell Commands for directory and file management Pipes and redirections Regular expressions Tools for software management (apt, pip, python distributions, etc.) Operating system tools for data processing Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 10 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Introduction to Computer programming Codice M-I1070.1 Crediti 9.0 ECTS Semestre di riferimento 1° Durata 2 semestri Tipo di modulo Obbligatorio Responsabile modulo Pedrazzini Sandro Corsi Ore SA Ore SP C-I1071E.1 Introduction to Computer programming 2.0 2.0 E-I1071E.1 Ex. Introduction to Computer programming 4.0 4.0 Totale ore settimanali: 6.0 6.0 Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 11 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Descrittivo dei corsi Introduction to Computer programming Codice C-I1071E.1 Ore totali 4.0 Obiettivi Acquire essential knowledge on the theoretical basis of computer science Analyze a problem and translate it into a computer program Be able of writing simple algorithms ("in the small") solving a well defined problem using a dynamic language Learn the fundamental data structures at the basis of all other complex data structures. Acquire the knowledge of the most basic algorithms operating on those data structures. Basic knowledge of algorithm stability Uses of classes as data structures Contenuti 1. Introduction to programming A simplified architecture model of a sequential computer Problem aalysis Variables and Simple Data Types Lists and Dictionaries Conditions and iterations User Input Functions and parameters Recursion Use of classes Files and Exceptions 2. Introduction to algortihms and data structures Data structures and abstract data types Linked list data structure and its implementation Stacks and queues Binary search trees Balanced trees Associative arrays and dictionaries Hashing Sorting algorithms Non-comparison based sorting algorithms Counting sort and radix sort Algorithm stability Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 12 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Project management Codice M-C2020E.1 Crediti 2.0 ECTS Semestre di riferimento 2° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Bassi Antonio Corsi Ore SA Ore SP C-C2021E.1 Project management - 2.0 Totale ore settimanali: - 2.0 Descrittivo dei corsi Project management Codice C-C2021E.1 Obiettivi Understand the project management lexicon to communicate in a correct way Provide theoretical and practical knowledge for proper and integrated project management Define the project plans to plan and manage the project Define the project life cycle to improve the project strategy Define the main tools and techniques to manage the project Define the processes and the related work flow for an efficient project management Understand the power of knowledge to improve the results of the organization Contenuti Project introduction to understand the context Terminology introduction to use a common lexicon Scope and objectives definition to define requirements, assumptions and constraints Definition of the main components of the project Time management to define project activities, critical path and project schedule Cost management to define project budget and the project contingency Control management to protect the plans with the Earned Value Management System Risk management Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 13 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Data challenge: Annual project in applied data science Codice M-D2010E.1 Crediti 4.0 ECTS Semestre di riferimento 2° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corani Giorgio Corsi Ore SA Ore SP E-D2011E.1 Ex. Data challenge: Annual project in applied data - 2.0 science Totale ore settimanali: - 2.0 Descrittivo dei corsi Ex. Data challenge: Annual project in applied data science Codice E-D2011E.1 Obiettivi Improve programming skills by working on a real-world data set, performing basic tasks of data processing, data analysis and data visualization. The activities rely on the notions learned during the first semester. Contenuti The challenge will propose different tasks, including: - data acquisition and data formatting - basic manipulation of data in Python - simple data visualization using Jupyter notebooks - implementation of a complete data processing pipeline - presentation of the results Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 14 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Hackathon Codice M-D2020E.1 Crediti 2.0 ECTS Semestre di riferimento 2° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Huber David Corsi Ore SA Ore SP E-D2021E.1 Ex. Hackathon - 1.0 Totale ore settimanali: - 1.0 Descrittivo dei corsi Ex. Hackathon Codice E-D2021E.1 Obiettivi Practice working as a team on a project anticipating topics that will be covered in the 2nd semester. Contenuti During the hackathon students will be given a number of high-level goals to be addressed in teams. The activity will cover both topics that the students already know from the 1st semester, as well as new topics that will be covered in the following semester. The hackathon will be loosely guided, so that the students will have the freedom to explore different solution approaches. The activity will be closed by an evaluated presentation of the work performed by each team. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 15 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Calculus and Linear algebra 2 Codice M-B3010E.1 Crediti 5.0 ECTS Semestre di riferimento 3° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Garzoni Matteo Corsi Ore SA Ore SP C-B3011E.1 Calculus 2 2.0 - C-B3012E.1 Linear algebra 2 2.0 - E-B3011E.1 Ex. Calculus 2 2.0 - Totale ore settimanali: 6.0 - Descrittivo dei corsi Calculus 2 Codice C-B3011E.1 Obiettivi Capability of solving ordinary differential equations Capacity of modelling and solving real/engineering problems with reasoning and abstraction Contenuti mutivariate functions applications of integrals ordinary differential equations Linear algebra 2 Codice C-B3012E.1 Obiettivi Knowledge of matrix computation, eigenvalues, eigenvectors and the associated applications Ability of manipulating matrices Capacity of using proper tools for algebraic calculus, matrix manipulation and decomposition Contenuti eigenvalues and eigenvectors norms systems of ODES, linear time-invariant systems Homogeneous coordinates Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 16 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Communication and Reporting Codice M-C3060.1 Crediti 2.0 ECTS Semestre di riferimento 3° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Carcano Cristina Corsi Ore SA Ore SP C-C3061.1 Communication and Reporting 2.0 - Totale ore settimanali: 2.0 - Descrittivo dei corsi Communication and Reporting Codice C-C3061.1 Obiettivi Acquire fundamental writing communication skills in order to be able to be: Complete and short: all information needed by the readers Correct: true, important, precise, grammatically correct Credible: supported by arguments Contenuti Basics of written communication: - strategy (goal and structure contents) - arguing/informing/motivating/describing texts - writing formats - vocabolary and warm words - bibliography (search and citation) How to write: - reports, project reports - thesis - abstrat - poster - paper - emails - meeting minute, memos - feedback - social media (Linkedin, post, ..) Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 17 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Supervised Learning Codice M-D3010.1 Crediti 6.0 ECTS Semestre di riferimento 3° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Wand Michael Corsi Ore SA Ore SP C-D3011.1 Supervised learning 4.0 - E-D3011.1 Ex. Supervised Learning 2.0 - Totale ore settimanali: 6.0 - Descrittivo dei corsi Supervised learning Codice C-D3011.1 Obiettivi Knowledge of the main supervised learning problems (classification, regression) Intuitive understanding of the inner workings of sophisticated classifiers (trees, forests, svms) Understanding of model scoring and comparison metrics Detailed understanding of the inner workings of simple classification models (nn, logreg, nbc) Capability of recognizing underfitting and overfitting symptoms and of properly addressing Capability of addressing feature engineering tasks Capability of selecting and using classification and regression models to solve practical problems and properly interpreting their results Contenuti Intro to supervised learning and classification Training-validation-testing split and cross validation strategies Classification metrics (accuracy, confusion matrix) Cost-sensitive classification Model evaluation and ROC Overfitting and Bias-Variance Tradeoff Discussion of some Classification models: - Neural Networks - K-Nearest Neighbors - logistic regression - decision trees - random forests - support vector machines (SVM) Practical problems from key areas Review of simple linear regression and regression metrics Multiple Linear Regression Nonlinear Regression and smoothing Practical problems from key areas Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 18 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Data visualization Codice M-D3020.1 Crediti 4.0 ECTS Semestre di riferimento 3° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Mazza Riccardo Corsi Ore SA Ore SP C-D3021.1 Data visualization 2.0 - E-D3021.1 Ex. Data visualization 2.0 - Totale ore settimanali: 4.0 - Descrittivo dei corsi Data visualization Codice C-D3021.1 Obiettivi Acquire fundamental skills in data visualization in order to: - Understand how visual perception works and how it can be effectively used to amplify cognition - Understand the key design principles and techniques for visualizing data - Understand the different wide variety of data visualization techniques available - Identify the appropriate visualization methods for particular types of data and for a given problem - Develop effective data pre-processing and interactive data visualizations using a visualization tool (Tableau) and be able to argue for their effectiveness - Evaluate the quality of a visual representation Contenuti History of visualization (who, why, when,…) Fundamentals of visualization - Theories and reference models - Data types - Perception - Interaction Visualization techniques (with practical applications with the tool) - Multivariate data visualizations - Network data visualizations - Hierarchical data visualizations Visualization applications (introduction) - Business intelligence - Visual analytics - Visual storytelling Evaluation of visual applications Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 19 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Hackathon 2 Codice M-D3030.1 Crediti 2.0 ECTS Semestre di riferimento 3° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Huber David Corsi Ore SA Ore SP E-D3031.1 Ex. Hackathon 2 1.0 - Totale ore settimanali: 1.0 - Descrittivo dei corsi Ex. Hackathon 2 Codice E-D3031.1 Obiettivi Practice working as a team on a project touching topics that will be covered in the 3rd semester. Contenuti Simple tasks motivated by real problems related to data management, visualization and simple handcrafted classification rules. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 20 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Data Management Codice M-I3060.1 Crediti 5.0 ECTS Semestre di riferimento 3° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Mastropietro Roberto Corsi Ore SA Ore SP C-I3061.1 Data Management 2.0 - E-I3061.1 Ex. Data Management 4.0 - Totale ore settimanali: 6.0 - Descrittivo dei corsi Data Management Codice C-I3061.1 Obiettivi Learn and use the functionalities offered by DBMS Learn and use different data management tools Learn and use cloud-based persistence systems Identify the best technologies for a given data management problem. Contenuti Database vs DBMS DB Design, relational model SQL Indices NoSQL, Document-based, Key-value and Graph-based systems Blockchain data structure Introduction to Datawarehouses. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 21 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Software Modelling with Applications Codice M-I3070.1 Crediti 5.0 ECTS Semestre di riferimento 3° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Pedrazzini Sandro Corsi Ore SA Ore SP C-I3071.1 Software Modelling with Applications 2.0 - E-I3071.1 Ex. Software Modelling with Applications 4.0 - Totale ore settimanali: 6.0 - Descrittivo dei corsi Software Modelling with Applications Codice C-I3071.1 Obiettivi Understand Object Oriented programming and inheritance Organise code in packages and apply the principles of component oriented programming for "in the large" programs Apply software engineering techniques in the code development process. Contenuti Object oriented programming (polymorphism, inheritance - Component oriented programming (web services) Elements of software engineering: - Development methodologies (e.g. Agile) - Software Requirements and UML (some diagrams: sequence + class) - Software quality and testing Web services Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 22 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Applied Operations Research Codice M-B4050.1 Crediti 4.0 ECTS Semestre di riferimento 4° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Salani Matteo Corsi Ore SA Ore SP C-B4051.1 Applied Operations Research - 2.0 E-B4051.1 Ex. Applied Operations Research - 2.0 Totale ore settimanali: - 4.0 Descrittivo dei corsi Applied Operations Research Codice C-B4051.1 Obiettivi Analyse and understand how to formulate a problem and to identify a suitable optimisation technique Learn the major algorithms to solve flavours of mathematical programming problems Apply the learnt techniques to case studies of industrial problems (logistics and production planning). Contenuti The course will present a thorough introduction to the fundamental algorithmic techniques of Discrete Mathematics: - Linear programming and the simplex algorithm - Integer programming and mixed integer programming - Network flow problems - Shortest Path Problem, Travelling Salesman problem, Vehicle routing problem. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 23 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Algorithm design Codice M-B4060.1 Crediti 6.0 ECTS Semestre di riferimento 4° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Mastrolilli Palmo Monaldo Corsi Ore SA Ore SP C-B4061.1 Algorithm design - 4.0 E-B4061.1 Ex. Algorithm design - 4.0 Totale ore settimanali: - 8.0 Descrittivo dei corsi Algorithm design Codice C-B4061.1 Obiettivi Acquire basic competencies in graph algorithms and graph optimisation Learn and study search algorithms Study heuristic and meta-heuristic algorithms. Contenuti Basic computational complexity Basic graph algorithms: breadth-first and depth-first search Search algorithms, including non-informed search, heuristic search, and concurrent search Metaheuristics for optimisation: ant colony optimisation, simulated annealing, genetic algorithms Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 24 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Unsupervised learning Codice M-D4010.1 Crediti 4.0 ECTS Semestre di riferimento 4° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Wand Michael Corsi Ore SA Ore SP C-D4011.1 Unsupervised learning - 2.0 E-D4011.1 Ex. Unsupervised learning - 2.0 Totale ore settimanali: - 4.0 Descrittivo dei corsi Unsupervised learning Codice C-D4011.1 Obiettivi Knowledge of the main unsupervised learning problems (clustering, recommendation, anomaly detection) Understanding of clutering methos Capability of selecting and using unsupervised learning algorithms to solve simple real-world problems and properly interpreting their results. Contenuti Intro to unsupervised learning and clustering Clustering methods (hierarchical, kmeans) Recommender systems Anomaly and outlier detection Practical problems from key areas. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 25 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Vertical Domain Application in Key Areas Codice M-D4020.1 Crediti 4.0 ECTS Semestre di riferimento 4° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Piga Dario Corsi Ore SA Ore SP C-D4021.1 Vertical Domain Application in Key Areas - 4.0 Totale ore settimanali: - 4.0 Descrittivo dei corsi Vertical Domain Application in Key Areas Codice C-D4021.1 Obiettivi Build up knowledge on how data science is being applied to a variety of real world application fields. Contenuti Introduction to the key areas of vertical domain application such as fintech, industry 4.0, biotech (pharma), fashion industry, robotics (drones, autonomous vehicles), Internet of Things, social networks, mobility, energy, environment and climate change. Analysis and discussion with domain experts on case studies from selected applications. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 26 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Data Challenge: Annual Project in Applied Data Science 2 Codice M-D4030.1 Crediti 4.0 ECTS Semestre di riferimento 4° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corani Giorgio Corsi Ore SA Ore SP E-D4031.1 Ex. Data Challenge: Annual Project in Applied - 2.0 Data Science 2 Totale ore settimanali: - 2.0 Descrittivo dei corsi Ex. Data Challenge: Annual Project in Applied Data Science 2 Codice E-D4031.1 Obiettivi Exercise programming and analysis skills by working on a real-world dataset, performing more advanced tasks of data analysis. The activities relies on the notions learned during up to third semester. Contenuti The challenge will propose different tasks, including: Data collection Data preprocessing Data analysis (statistics / ML) Evaluation of results Presentation of the results in written form. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 27 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Hackathon 3 Codice M-D4040.1 Crediti 2.0 ECTS Semestre di riferimento 4° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Huber David Corsi Ore SA Ore SP E-D4041.1 Ex. Hackathon 3 - 1.0 Totale ore settimanali: - 1.0 Descrittivo dei corsi Ex. Hackathon 3 Codice E-D4041.1 Obiettivi Practice working as a team on a project touching topics that will be covered in the 4th semester. Contenuti Simple tasks motivated by real problems related to parallel programming, and operation research. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 28 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Parallel and Concurrent Programming Codice M-I4070.1 Crediti 4.0 ECTS Semestre di riferimento 4° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Leidi Tiziano Corsi Ore SA Ore SP C-I4071.1 Parallel and Concurrent Programming - 2.0 E-I4071.1 Ex. Parallel and Concurrent Programming - 2.0 Totale ore settimanali: - 4.0 Descrittivo dei corsi Parallel and Concurrent Programming Codice C-I4071.1 Obiettivi Understand the principles of parallel and concurrent programming in a language independent way. Know how to apply such techniques in an operating environment and programming language. Know how to develop concurrent applications based on shared memory, message passing, synchronous and asynchronous events. Understand the basics of modern parallelization infrastructures. Study classical parallelization problems. Contenuti Theoretical concepts of concurrency and synchronization: atomicity, visibility, thread-safety, liveness, load balancing and scalability. Elements of concurrent programming: thread, lock Scheduling strategies with threads Principles pf parallel programming: models and tecniques for parallel processing Solutions for parallel programming in Python: thread-pools, TBD Classical synchronization problems GPUs programming principles. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 29 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Ethics, Law and Privacy in Data and Analytics Codice M-C5020.1 Crediti 2.0 ECTS Semestre di riferimento 5° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corsi Ore SA Ore SP C-C5021.1 Ethics, Law and Privacy in Data and Analytics 2.0 - Totale ore settimanali: 2.0 - Descrittivo dei corsi Ethics, Law and Privacy in Data and Analytics Codice C-C5021.1 Obiettivi Learn key technical, ethical, policy and legal terms and concepts related to DS Identify and assess the ethical and legal impacts of a given course of action in the data profession Learn techniques for protecting privacy in data-driven context/areas (organisations) Learn algorithmic and data-driven approaches for mitigating biases and enhancing fairness in AI/ML systems. Contenuti What are ethics? Societal implications of data profession Data collection, representation and exclusion Data owernship Privacy and anonimity Fairness and bias Legal framework for the data profession. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 30 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Advanced Machine Learning Codice M-D5010.1 Crediti 4.0 ECTS Semestre di riferimento 5° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corsi Ore SA Ore SP C-D5011.1 Advanced Machine Learning 2.0 - E-D5011.1 Ex. Advanced Machine Learning 2.0 - Totale ore settimanali: 4.0 - Descrittivo dei corsi Advanced Machine Learning Codice C-D5011.1 Obiettivi Knowledge of important tasks in ML pipelines such as feature engineering, selection and dimensionality reduction Ability to handle and visualize high-dimensional data Balancing accuracy and complexity for real-world ML applications. Contenuti Feature engineering methods Dimensionality reduction in the unsupervised case Feature selection for classification and regression Principal component analysis Hidden Markov Models for sequence data Practical problems from key areas. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 31 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Deep Learning and Computer Vision Codice M-D5020.1 Crediti 5.0 ECTS Semestre di riferimento 5° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corsi Ore SA Ore SP C-D5021.1 Deep Learning and Computer Vision 2.0 - E-D5021.1 Ex. Deep Learning and Computer Vision 4.0 - Totale ore settimanali: 6.0 - Descrittivo dei corsi Deep Learning and Computer Vision Codice C-D5021.1 Obiettivi Knowledge of basic deep learning concepts: neural networks, backpropagation Capability of applying common deep models for image classification (Convolutional Neural Networks) to real-world tasks Knowledge of other computer vision tasks solved by deep learning (segmentation, detection) Contenuti Introduction to neural networks and deep learning Neural Networks: mathematical foundations Gradient-based optimization and backpropagation Deep learning for computer vision Deep Learning for sequences Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 32 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Bayesian Probabilistic Programming Codice M-D5030.1 Crediti 4.0 ECTS Semestre di riferimento 5° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corsi Ore SA Ore SP C-D5031.1 Bayesian Probabilistic Programming 2.0 - E-D5031.1 Ex. Bayesian Probabilistic Programming 2.0 - Totale ore settimanali: 4.0 - Descrittivo dei corsi Bayesian Probabilistic Programming Codice C-D5031.1 Obiettivi Konwledge of Bayesian inference Capability of defining a probabilistic model: - model definition - objective funcion definition - optimization method choice Capability of assessing the performance of a probabilistic model Capability of implementing simple probabilistic models Contenuti Bayesian inference Probabilistic modelling: - model definition - objective funcion definition - optimization method choice Performance evaluation of probabilistic models: - accuracy - correctness of the numerical sampling - interpretation of the statistics Introduction of probabilistic programming languages Implementation of basic machine learning models: - simple regression models - hierarchical models - clustering (LDA) Practical problems from key areas. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 33 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Applied Case Studies of Machine Learning and Deep Learning in Key Areas Codice M-D5040.1 Crediti 6.0 ECTS Semestre di riferimento 5° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corsi Ore SA Ore SP C-D5041.1 Applied Case Studies of Machine Learning and 4.0 - Deep Learning in Key Areas E-D5041.1 Ex. Applied Case Studies of Machine Learning 4.0 - and Deep Learning in Key Areas Totale ore settimanali: 8.0 - Descrittivo dei corsi Applied Case Studies of Machine Learning and Deep Learning in Key Areas Codice C-D5041.1 Obiettivi Expand knowledge on how data science is being applied to a variety of real world application fields. Contenuti Provide solutions to case studies from the concerned key areas of applications Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 34 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Data Challenge: Annual Project in Applied Data Science 3 Codice M-D5050.1 Crediti 4.0 ECTS Semestre di riferimento 5° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corani Giorgio Corsi Ore SA Ore SP E-D5051.1 Ex. Data Challenge: Annual Project in Applied 2.0 - Data Science 3 Totale ore settimanali: 2.0 - Descrittivo dei corsi Ex. Data Challenge: Annual Project in Applied Data Science 3 Codice E-D5051.1 Obiettivi Exercise programming and analysis skills by working on a real-world dataset, performing advanced tasks of data analysis. Contenuti The challenge will propose different tasks, including: Data collection, prepocessing and analysis Evaluation of societal, ethical and legal implications of data analysis Presentation of the results in written form. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 35 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Hackathon 4 Codice M-D5060.1 Crediti 2.0 ECTS Semestre di riferimento 5° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Huber David Corsi Ore SA Ore SP E-D5061.1 Ex. Hackathon 4 1.0 - Totale ore settimanali: 1.0 - Descrittivo dei corsi Ex. Hackathon 4 Codice E-D5061.1 Obiettivi Practice working as a team on a project touching topics covered in the 5th semester. Contenuti Simple tasks motivated by real problems related to big data. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 36 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Big Data Processing Codice M-I5080.1 Crediti 4.0 ECTS Semestre di riferimento 5° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corsi Ore SA Ore SP C-I5081.1 Big Data Processing 2.0 - E-I5081.1 Ex. Big Data Processing 2.0 - Totale ore settimanali: 4.0 - Descrittivo dei corsi Big Data Processing Codice C-I5081.1 Obiettivi Introduction to Big Data problems and frameworks. Contenuti Apache Ecosystem: Kafka, Hadoop, Spark, etc From MapReduce to Functional in Spark Cloud platforms for data analysis and machine learning Tableau Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 37 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Natural Language Processing and Text Mining Codice M-D6010.1 Crediti 4.0 ECTS Semestre di riferimento 6° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corsi Ore SA Ore SP C-D6011.1 Natural Language Processing and Text Mining - 2.0 E-D6011.1 Ex. Natural Language Processing and Text Mining - 2.0 Totale ore settimanali: - 4.0 Descrittivo dei corsi Natural Language Processing and Text Mining Codice C-D6011.1 Obiettivi The goal of this course is to provide the students with an in-depth understanding of the field of computational linguistics (a.k.a. NLP). We will cover the main problems taken into consideration by the field, such as text analysis, text classification, information extraction, dialogue, translation. We will present an historical overview of the field with a quick look at historical approaches, followed by a rich treatment of the most modern approaches (based on word embeddings and deep learning). Contenuti Application areas: - Text classification, Information Extraction, Text Understanding, Question Answering, Dialogue, Text Generation, Translation Traditional sequential NLP pipeline modules: - Sentence splitting, tokenization, PoS tagging, lemmatization, chunking, syntactic parsing, co-reference resolution, rethorical structure Approaches based on classical ML: - Topic modelling, sentiment classification, n-gram language models, evaluation metrics Modern neural-based approaches: - RNNs, CNN, LSTMs, seq2seq, attention and the transformer architecture Word Embeddings: - word2vec, fastText, GloVe, Elmo, BERT Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 38 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Time series, Analytics and Forecasting Codice M-D6020.1 Crediti 4.0 ECTS Semestre di riferimento 6° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corsi Ore SA Ore SP C-D6021.1 Time series, Analytics and Forecasting - 2.0 E-D6021.1 Ex. Time series, Analytics and Forecasting - 2.0 Totale ore settimanali: - 4.0 Descrittivo dei corsi Time series, Analytics and Forecasting Codice C-D6021.1 Obiettivi Knowledge of the most important forecasting algorithms Ability of making decisions based on probabilistic forecasting Ability of using forecasting libraries Contenuti TS visualization Forecasting algorithms (exponential smoothing, arima) and automatic forecasting Practical problems from key areas (e.g.: hierarchical forecasting)HMM and RNNs for sequential data analysis, assuming that Deep learning concepts are already known Time series classification Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 39 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Applied Case Studies of Machine Learning and Deep Learning in Key Areas 2 Codice M-D6030.1 Crediti 4.0 ECTS Semestre di riferimento 6° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corsi Ore SA Ore SP C-D6031.1 Applied Case Studies of Machine Learning and - 4.0 Deep Learning in Key Areas 2 E-D6031.1 Ex. Applied Case Studies of Machine Learning - 4.0 and Deep Learning in Key Areas 2 Totale ore settimanali: - 8.0 Descrittivo dei corsi Applied Case Studies of Machine Learning and Deep Learning in Key Areas 2 Codice C-D6031.1 Obiettivi Expand knowledge on how data science is being applied to a variety of real world application fields. Contenuti Provide solutions to case studies from the concerned key areas of applications. Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 40 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Data Security and Blockchain Codice M-I6040.1 Crediti 4.0 ECTS Semestre di riferimento 6° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corsi Ore SA Ore SP C-I6041.1 Data Security and Blockchain - 2.0 E-I6041.1 Ex. Data Security and Blockchain - 2.0 Totale ore settimanali: - 4.0 Descrittivo dei corsi Data Security and Blockchain Codice C-I6041.1 Obiettivi Understand the principles of ICT and data security (including blockhain). Study the fundamentals of modern cryptographic systems. Understand how security and data science can co-operate to improve reciprocally (the importance of ICT security for data science and the usefulness of data science for cybersecurity). Contenuti Security of online information systems Security of protocols and authentication systems (PKI, HTTPS, ...) Cryptography and code theory Congruence arithmetic Enduser security (how to protect data and avoid loss) The application of data science techniques to the fight against cyber-criminality Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 41 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Diploma Thesis Codice M-P6080E.1 Crediti 13.0 ECTS Semestre di riferimento 6° Durata 1 semestre Tipo di modulo Obbligatorio Responsabile modulo Corsi Ore totali P-P6081E.1 Diploma Thesis - Totale ore settimanali: - - Bachelor of Science SUPSI in Data Science and Artificial Intelligence TP, 2020/2021 42 di 42 Dipartimento tecnologie innovative - 25/01/2021 02:57:52
Puoi anche leggere