Influenza della variabilit meteo-climatica sul fabbisogno elettrico nazionale a scala mensile - Area: Governo, gestione e sviluppo del sistema ...
←
→
Trascrizione del contenuto della pagina
Se il tuo browser non visualizza correttamente la pagina, ti preghiamo di leggere il contenuto della pagina quaggiù
Influenza della variabilità meteo-climatica sul fabbisogno elettrico nazionale a scala mensile Francesco Apadula, Alessandra Bassini, Alberto Elli Area: Governo, gestione e sviluppo del sistema elettrico Febbraio 2010 nazionale
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 1/39 Contratto Accordo di programma 2009÷2011 con il Ministero dello Sviluppo Economico per le attività di ricerca e sviluppo di interesse generale per il sistema elettrico nazionale. Piano Annuale di realizzazione 2009. Oggetto Influenza della variabilità meteo-climatica sul fabbisogno elettrico nazionale a scala mensile Progetto 1: Studi sullo sviluppo del Sistema Elettrico e della Rete Elettrica Nazionale Linea di Analisi di scenari di sviluppo del sistema elettrico italiano Ricerca Deliverable 6 Note PUBBLICATO 09004598 (PAD -820887) La parziale riproduzione di questo documento è permessa solo con l'autorizzazione scritta di ERSE. N. pagine 39 N. pagine fuori testo Data 28/02/2010 Mod. RPRDS v. 03 Elaborato Elli Alberto (ASV), Apadula Francesco d'Assisi (ASV), Bassini Alessandra (ASV) 09004598 436345 AUT 09004598 436362 AUT 09004598 436376 AUT Elaborato ASV – Francesco Apadula, Alessandra Bassini, Alberto Elli ASV – Paolo Bonelli, Stefano Maran Verificato Verificato Maran Stefano (ASV), Bonelli Paolo (ASV) 09004598 436585 VER 09004598 436641 VER ASV – Antonio Negri Approvato Approvato TTD – ClaudioClaudio Cherbaucich Cherbaucich (TTD), Negri Antonio Nicola (ASV) 09004598 436446 APP 09004598 436621 APP ENEA – Ricerca sul Sistema Elettrico S.p.A. via R. Rubattino, 54 - 20134 Milano - Italia Tel. +39 023992.1 - Fax +39 023992.5370 Capitale sociale 1.100.000 Euro i.v. R.I. di Milano, C.F. e P.IVA 05058230961, N. R.E.A. 1793295 ISO 9001 CH-32919
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 2/39 Indice SOMMARIO............................................................................................................................................. 3 1 INTRODUZIONE ............................................................................................................................ 5 2 DATI UTILIZZATI E SVILUPPO DI SERIE METEOROLOGICHE REGIONALI ............. 7 2.1 Elaborazione dati meteorologici................................................................................................ 7 2.2 Rappresentazione del calendario .............................................................................................. 15 3 DESCRIZIONE DEL MODELLO ............................................................................................... 16 4 SIMULAZIONI E ANALISI DEI RISULTATI .......................................................................... 18 5 CONSIDERAZIONI FINALI E PROSPETTIVE PER IL FUTURO ...................................... 38 6 BIBLIOGRAFIA ............................................................................................................................ 39 © Copyright 2010 by ERSE. All rights reserved - Activity code 1045/09
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 3/39 STORIA DELLE REVISIONI Numero Data Protocollo Lista delle modifiche e/o dei paragrafi modificati revisione 0 28/02/2010 09004598 Prima emissione SOMMARIO Il presente Rapporto è parte integrante della documentazione delle attività di Ricerca di Sistema previste dal “Piano Annuale di Realizzazione 2009” nell’ambito del progetto “STUDI SULLO SVILUPPO DEL SISTEMA ELETTRICO E DELLA RETE ELETTRICA NAZIONALE” (Area “Governo, gestione e sviluppo del sistema elettrico nazionale”) e ne costituisce il Deliverable N.6. L’attività di ricerca svolta è consistita in un ampliamento e approfondimento dello studio effettuato nel precedente Piano di Realizzazione relativo all’influenza delle variabili meteoclimatiche sulla domanda elettrica mensile nazionale. In tale studio è stata evidenziata la significativa incidenza della temperatura e di grandezze da essa derivate (i gradi giorno ‘caldi’ e ‘freddi’) sulla richiesta elettrica. Al fine di migliorare il modello di simulazione/previsione del carico sviluppato lo scorso anno, è stata innanzitutto effettuata una estesa indagine bibliografica sui metodi di previsione del carico elettrico attualmente utilizzati e/o in fase di studio. Particolare attenzione è stata rivolta ai modelli che descrivono l’andamento del carico su base mensile in funzione delle variabili socioeconomiche, meteoclimatiche e di tipo calendario. La ricerca è stata finalizzata a valutare l’introduzione di altre variabili potenzialmente significative per la realtà italiana e per la scala temporale considerata. Grazie alla disponibilità di dati meteorologici relativi ad un maggior numero di stazioni con il requisito di prossimità a grandi centri urbani, è stato inoltre possibile affinare, rispetto all’anno precedente, la stima delle temperature minime e massime giornaliere in aree omogenee dal punto di vista meteoclimatico. Di conseguenza è stata migliorata la valutazione dei gradi giorno caldi e freddi a livello nazionale. Inoltre, l’acquisizione per tutte le stazioni di valori di altre grandezze, quali l’umidità relativa, la velocità del vento e la copertura nuvolosa, ha consentito di introdurre nel modello nuove variabili meteoclimatiche, quali la temperatura apparente (Thi), il ‘Wind Chill’ (Twc) e un indice di copertura nuvolosa. Il calcolo dei gradi giorno è stato quindi condotto anche sulla base della temperatura apparente e del ‘Wind Chill’. L’attività svolta ha riguardato prevalentemente il controllo di qualità dei diversi dati meteorologici acquisiti e la preparazione dei dati di input per il modello di simulazione/previsione del carico. In particolare sono stati sviluppati programmi ‘ad hoc’ per la generazione, per il periodo 1980-2008, di serie complete di valori mensili nazionali delle variabili di interesse, a partire da serie di dati grezzi con risoluzione giornaliera o tri-oraria. Oltre alla necessaria rielaborazione della scala temporale, le serie grezze sono state depurate dalla presenza di dati spuri o fuori scala e di discontinuità temporali. Sono state poi eseguite alcune simulazioni della previsione mensile della domanda elettrica nazionale utilizzando per il calcolo dei gradi giorno sia le nuove variabili (Thi, Twc) che i valori massimi e minimi delle temperature effettivamente misurate. E’ stato quindi effettuato un confronto in termini di MAPE (Mean Absolute Percent Error) tra i dati a consuntivo del carico elettrico e i risultati delle simulazioni ottenute con diverse scelte delle variabili meteoclimatiche (temperature, copertura nuvolosa), oltre che delle variabili calendario. E’ stata infine compiuta una ricerca su serie di dati di variabili socioeconomiche che potrebbero influire in modo significativo sul consumo elettrico. Le variabili potenzialmente utili individuate sono il Prodotto Interno Lordo (PIL), la produzione industriale, la fatturazione e nuovi ordinativi, il costo dell’energia, la crescita della popolazione e dei metri quadri abitati.
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 4/39 L’analisi finale eseguita con diverse variabili meteorologiche ha mostrato dei risultati incoraggianti anche in relazione a quanto ottenuto in passato. Infatti, l’uso di altre grandezze meteorologiche quali la copertura nuvolosa e l’umidità relativa associata alla temperatura (Heat Index ovvero la Thi) ha permesso di ottenere delle simulazioni della domanda elettrica maggiormente accurate. In particolare le variabili più significative derivate dalle grandezze meteorologiche sono risultate: Heating Degree Month (HDM, gradi mese di riscaldamento), Cooling Degree Month (CDM, gradi mese di raffrescamento), Heating Degree Month da Thi (HDMhi, gradi mese di riscaldamento calcolati tramite temperatura apparente Thi) e l’indice di copertura nuvolosa (Cds).
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 5/39 1 INTRODUZIONE Il Sistema elettrico è influenzato in maniera non trascurabile dalle condizioni meteorologiche e climatiche sia per quanto riguarda la gestione della rete elettrica e delle infrastrutture, sia per quanto riguarda la richiesta e l’offerta d’energia elettrica. Un’attenzione particolare al ruolo delle variabili meteoclimatiche nella gestione e nella pianificazione dello sviluppo del sistema elettrico nazionale risulta, pertanto, necessaria al fine sia di ottimizzare le risorse e le forniture, sia di ridurre i costi e l’impatto sull’ambiente globale. I cambiamenti climatici di cui spesso gli esperti del settore parlano, a volte con timore e a volte con scetticismo, e gli eventi meteorologici estremi registratisi in questi ultimi anni (si veda, ad esempio, l’ondata di caldo anomalo avutasi nell’estate del 2003), impongono una seria riflessione sul come l’evoluzione della domanda elettrica è stata influenzata nel passato e come potrebbe esserlo in futuro. Un’accurata previsione della domanda elettrica, infatti, consente non soltanto un sostanziale risparmio economico ma contribuisce anche a gestire in maniera più accorta e sicura la rete elettrica nazionale contribuendo a ridurre i rischi di eventuali “blackout”. Svariati metodi sono stati proposti in letteratura (Alfares et al., 2002; Feinberg et al., 2005) per affrontare il problema della previsione della domanda su interi Paesi o aree specifiche in funzione della scala temporale considerata (ora, giorno, mese, anno e lungo termine). In questo lavoro la metodologia adottata è stata quella della regressione lineare multipla. Un vantaggio di questo tipo di approccio rispetto ad altri metodi è che il modello è più semplice da usare ed è più facile da controllare. In effetti, a differenza di altri metodi quali, ad esempio, quelli basati sulle reti neurali, è possibile investigare con semplicità e trasparenza l’influenza delle diverse variabili sulla domanda elettrica ripetendo le analisi con diverse combinazioni delle variabili d’ingresso. Altri autori (Hor et al., 2005) hanno peraltro verificato che, quanto a valori degli indici di errore statistico (Mean Error, Mean Square Error, Mean Absolute Percentage error, Standard Deviation Error,…..), un semplice modello di regressione lineare multipla fornisce risultati confrontabili a quelli di altri modelli comunemente utilizzati per effettuare previsioni di carico su base mensile. L’obiettivo principale di questa attività è stato quello di valutare il ruolo delle variabili meteorologiche sulla richiesta elettrica mensile nazionale evidenziando eventuali sinergismi derivanti dall’uso contemporaneo di diverse variabili meteorologiche (anche tra esse combinate). Tra le variabili meteoclimatiche, quelle che possono influire sul consumo elettrico sono: - la temperatura - l’umidità relativa - la velocità del vento - la copertura nuvolosa - le precipitazioni La temperatura è tra queste sicuramente la più significativa, poiché determina un aumento della richiesta elettrica sia durante i mesi estivi per la refrigerazione, sia d’inverno per il riscaldamento. Condizioni di elevata umidità relativa possono influire sull’efficienza dei sistemi di asciugatura a ventilazione d’aria ma, soprattutto, determinano, in presenza di elevate temperature estive, la percezione di una temperatura ambiente superiore a causa della minor evaporazione dell’umidità corporea. Ciò si riflette in una maggiore richiesta di energia per la refrigerazione. La velocità del vento, che pure potrebbe influire sull’uso dei sistemi di ventilazione e refrigerazione dell’aria durante i mesi estivi in presenza di alte temperature, ha sicuramente un’incidenza maggiore sulla domanda elettrica alle basse temperature. L’effetto del vento sui muri esterni degli edifici, specie se umidi, è, infatti, quello di raffreddarli maggiormente determinando un aumento delle richieste di riscaldamento. Data l’esistenza di diverse forme di produzione di energia termica per riscaldamento è
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 6/39 però evidente che l’effetto sull’aumento della domanda elettrica è solo parziale. Considerato anche il fatto che la presenza di vento è molto spesso un fenomeno locale, si ritiene a priori difficile rilevarne una significativa influenza sui valori mensili di carico elettrico nazionale. L’eventuale rilevanza di questo parametro è stata in ogni caso esaminata attraverso la valutazione di ‘gradi giorno freddi’ stimati sia per mezzo della semplice temperatura minima che della cosiddetta temperatura di ‘Wind-Chill’, che quantifica la minor temperatura percepita in presenza di vento con basse temperature. Le precipitazioni possono influire sull’aumento della richiesta elettrica per il riscaldamento e la deumidificazione degli ambienti in presenza di temperature esterne medio-basse. Al contrario possono però essere associate ad una diminuzione della richiesta elettrica per la refrigerazione nel periodo estivo, grazie al simultaneo verificarsi di un abbassamento della temperatura dell’aria. Pertanto, oltre ad essere un fenomeno molto locale come la presenza di vento, è ancor più improbabile che si possa rilevare un effetto significativo sul carico mensile nazionale. Per questo motivo si è deciso di non considerare tale parametro all’interno del modello. La copertura nuvolosa è associata all’uso dell’illuminazione diurna, verosimilmente soprattutto nelle fasce orarie dell’alba e tramonto. L’informazione più precisamente correlata con l’utilizzo o meno dell’illuminazione elettrica è quella del soleggiamento effettivo, per cui bisognerebbe tener conto sia delle ore di luce teoriche presenti in un giorno, funzione sia del periodo dell’anno che della latitudine, sia dello stato del cielo. Il modello utilizzato in questo lavoro si basa sul confronto della domanda in mesi corrispondenti di anni successivi, pertanto la sola variabile determinante è la copertura nuvolosa.
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 7/39 2 DATI UTILIZZATI E SVILUPPO DI SERIE METEOROLOGICHE REGIONALI I dati utilizzati per effettuare le simulazioni della domanda elettrica nazionale comprendono: 1. la serie storica dei valori di richiesta elettrica mensile nazionale per il periodo Gennaio 1981- Dicembre 2008 forniti da TERNA (Figura 1) 2. le temperature medie mensili nazionali per il periodo Gennaio 1980- Dicembre 2008 ottenute da TERNA sulla base di 25 stazioni di misura distribuite sul territorio nazionale 3. le serie storiche dei dati di temperatura minima e massima giornaliera di 28 stazioni meteorologiche gestite dal Centro Nazionale di Meteorologia e Climatologia Aeronautica (CNMCA) relative al medesimo periodo temporale 4. i dati SYNOP (SYNOPTIC: codice e modalità di rilevamento internazionali dei dati meteorologici) tri-orari relativi a umidità relativa, velocità del vento e copertura nuvolosa relativi alle medesime stazioni e allo stesso periodo temporale, forniti dal CNMCA. 5. le serie mensili dei giorni lavorativi e festivi per ciascun mese nel periodo indicato 6. dati ISTAT del PIL, degli indici di Produzione Industriale e di Fatturazione e Nuovi Ordinativi 2.1 Elaborazione dati meteorologici Per i dati meteorologici a maggiore risoluzione temporale sono state inizialmente identificate 37 stazioni di misura a bassa quota (elevazione inferiore a 300 m), prossime a centri urbani di media e grande dimensione. La vicinanza a centri urbani di un certo rilievo assicura che l’informazione meteoclimatica sia stata acquisita in prossimità dei punti che influenzano maggiormente il valore della domanda elettrica nazionale. Il requisito sulla elevazione consente inoltre di escludere la presenza di effetti tipicamente orografici sulle misure meteorologiche e di poter confrontare direttamente i dati di temperatura acquisiti senza dover considerare la diminuzione della temperatura dell’aria in funzione della quota. Le serie grezze di dati meteorologici fornite dal CNMCA sono state opportunamente filtrate ed esaminate per individuare la presenza di dati spuri (dati non numerici o valori non realistici) e per valutare l’entità dei dati mancanti per le diverse variabili di interesse. Per quanto riguarda le temperature minime e massime giornaliere, dopo aver eliminato gli eventuali dati di tipo non numerico, è stato applicato il seguente filtro per individuare la presenza di valori non realistici. Per ogni dato, ad esempio di Tmin (o Tmax), si considerano i valori giornalieri osservati in un intervallo di 5 gg centrato sul valore in esame per tutti gli anni del periodo temporale considerato (29 anni). Si calcola quindi il valor medio e la deviazione standard di tale insieme di valori e si scarta il dato in esame se il suo valore non appartiene all’intervallo definito da valor medio ± 3 deviazione standard. I valori mancanti all’origine o eliminati in base a questa procedura, non vengono rimpiazzati, in questa fase, con valori stimati.
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 8/39 Figura 1: Andamento della richiesta elettrica mensile nazionale (linea in colore nero). La curva d’interpolazione (linea in colore blu) rappresenta la media mobile centrata (di ordine 12 e passo 1) dei valori mensili della richiesta elettrica nazionale (fonte dati: TERNA). Per i dati SYNOP tri-orari, invece, è stata sviluppata un’applicazione “ad-hoc” che estrae le variabili di interesse, controlla l’appartenenza dei valori a intervalli prestabiliti, calcola le disponibilità di dati validi, sia a livello giornaliero sia rispetto all’intero periodo temporale considerato, effettua la statistica sui dati mancanti o fuori intervallo per ciascuna variabile e, infine, calcola i valori giornalieri e vi affianca i valori delle temperature massime e minime giornaliere. Più precisamente si estraggono dalle serie grezze i dati relativi a umidità relativa, velocità del vento e copertura nuvolosa e si verifica che i valori appartengano ai seguenti intervalli: • Umidità relativa (%): [8, 100] (si considerano non realistici valori inferiori all’8%) • Velocità del vento (m/s): [0, 50] (si considerano non realistici valori al suolo, non di raffica, superiori). • Copertura nuvolosa: [0,9] (la copertura del cielo è espressa in ottavi; il valore 9 corrisponde alla condizione di cielo non visibile, ad esempio per nebbia). Al fine di valutare la completezza e la qualità delle serie, sono valutate le percentuali di giorni, rispetto al numero di giorni nel periodo temporale esaminato, in cui risultano disponibili: - tutte le acquisizioni giornaliere (8 al massimo) - 7 valori/giorno - …… - nessun valore. Nel caso della “copertura nuvolosa”, non vengono considerate le acquisizioni delle ore 0 e 3 e si valutano le disponibilità solo sulle altre 6 acquisizioni, in quanto tale variabile verrà poi introdotta nel modello per rendere conto, eventualmente, della quota di consumi dovuti all’uso di illuminazione artificiale nelle ore diurne dei giorni nuvolosi. Per tutti i giorni in cui sono disponibili almeno 2 valori su 8, il programma calcola il valor medio, il minimo e il massimo dell’umidità relativa e il valor medio e il massimo della velocità del vento.
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 9/39 Per quanto riguarda la copertura nuvolosa, data la finalità per cui si usa tale informazione, si è deciso di non utilizzare direttamente il dato originale espresso in ottavi, ma di introdurre un indice per dare un peso opportuno a tale informazione all’interno del modello. Sono state quindi considerate tre fasce orarie giornaliere (1a fascia: acquisizioni ore GMT 6 e 9, 2a fascia: dati ore GMT 12 e 15, 3a fascia: dati ore GMT 18 e 21) e si è introdotto un indice al quale viene attribuito il valore 1 se almeno un dato di copertura per fascia è maggiore di 6, il valore 0 altrimenti, purché ci sia almeno un valore valido per fascia. Se, infatti, in una data fascia non ci sono valori validi di copertura, all’indice non é attribuito alcun valore. Vengono calcolati poi 2 parametri (uno giornaliero, l’altro rappresentativo della situazione all’alba e al tramonto) sommando i valori degli indici delle tre fasce o, rispettivamente, della 1a e 3a fascia soltanto. Tali somme sono effettuate solo se esistono i valori per gli indici di tutte le fasce interessate (tutte le fasce nel primo caso, la 1a e 3a fascia nel secondo). A partire dai valori di temperatura e umidità vengono anche calcolati, su base giornaliera, i valori della cosiddetta “temperatura apparente” (ovvero indice di calore, detto anche “Heat Index”). Questo parametro valuta il disagio fisiologico che si crea quando un’elevata temperatura dell’aria è associata ad una alta umidità relativa e lo traduce in un valore di temperatura superiore a quello effettivamente misurato da uno strumento. L’equazione utilizzata (Apadula, 2004) per calcolare la temperatura apparente Thi, derivata nella sua forma originale da Steadman (1979), è applicabile solo quando la temperatura T e l’umidità relativa U dell’aria sono simultaneamente uguali o maggiori, rispettivamente, a 27 °C e al 40%: Thi = HI = a + b T + c U + d T U + e T U2 + f T2 U + g T2 + h U2 + i T2 U2 dove i valori dei coefficienti sono: a = -8.78469476 b = +1.61139411 c = +2.33853852 d = -0.14611605 e = +0.00072546 f = +0.00221173 g = -0.01230809 h = -0.01642483 i = -0.00000358 In Figura 2 è mostrato l’andamento della temperatura apparente, per fissati valori di temperatura dell’aria, in funzione dell’umidità relativa. Figura 2: Andamento della Temperatura apparente (o indice di calore) in funzione dell’umidità relativa. Ogni curva riportata nel grafico rappresenta la relazione tra Thi e U ad un fissato valore di temperatura.
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 10/39 Dato che il superamento della soglia di 27 °C avviene tipicamente nelle ore diurne (quando si manifesta, eventualmente, un aumento della domanda di energia dovuta al maggior utilizzo dei sistemi di refrigerazione), si è deciso di calcolare le temperature apparenti sulla base dei valori delle temperature massime e delle umidità minime giornaliere. Tale circostanza, infatti, è tipica dell’evoluzione giornaliera delle temperature e dell’umidità relativa (valori massimi dell’una, in condizioni di tempo stabile, sono associati ai minimi dell’altra e viceversa). Quando le condizioni per il calcolo di Thi non sono entrambe verificate (ma esistono sia il valore di umidità relativa che di temperatura), il valore di Thi coincide con quello disponibile della temperatura massima. Se manca il valore di umidità relativa, il campo di Thi é lasciato vuoto anche se è disponibile il valore di Tmax. In quest’ultimo caso, infatti, l’inserimento di un valore di temperatura desunto dalla sola Tmax tra valori adiacenti di Thi che potrebbero essere molto maggiori, darebbe luogo a delle fluttuazioni nell’andamento di Thi prive di significato fisico. Analogamente è stato introdotto il “Wind Chill Index” (Twc) che descrive la temperatura percepita dal corpo umano in condizioni di freddo (T
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 11/39 L’omogeneità delle diverse stazioni all’interno di un’area è stata giudicata sulla base dell’analisi statistica relativa alle temperature massime e minime areali, ritenendo che per questi parametri esista una minore variabilità locale delle misure. Le valutazioni effettuate hanno portato a ridefinire i raggruppamenti iniziali e ad escludere parte delle 37 stazioni disponibili. E’ importante tenere presente che il criterio per individuare le stazioni di misura da inserire in ciascuna area è stato modificato rispetto al precedente Piano di Realizzazione. Mentre in passato il raggruppamento è stato effettuato prevalentemente sulla base di criteri geografici, in questo lavoro la distribuzione delle allocazioni delle stazioni è stata affinata utilizzando il criterio di omogeneità summenzionato. Ad esempio, la stazione di Luni-Sarzana è stata collocata nell’Alta Penisola invece che nell’area Nord Ovest, mentre la stazione di Capo Mele non è stata inclusa in nessun area poiché non coerente con le medie areali delle regioni considerate. A supporto di quanto realizzato è stata anche eseguita un’analisi delle componenti principali dei dati della temperatura massima giornaliera che ha confermato, per un discreto numero di stazioni meteorologiche, l’appartenenza ad una specifica componente corrispondente all’area individuata. L’applicazione dell’analisi delle componenti principali è stata applicata soltanto per ottenere una conferma della qualità del metodo descritto in precedenza. L’uso rigoroso della sola analisi delle componenti principali poneva il problema, soprattutto per le aree a bassa latitudine, dell’inserimento di stazioni di misura collocate in aree sostanzialmente diverse dal punto di vista geografico. Le 28 stazioni infine selezionate e raggruppate per area, riportate in Tabella 1, sono risultate in numero di poco superiore al passato (25 stazioni) e in parte non coincidenti con esse. Le stazioni evidenziate in rosso in Tabella 1 sono quelle comuni nei due casi e attribuite alle medesime aree; la stazione di Sarzana è stata evidenziata in un colore diverso perché, pur essendo in comune, è stata, come già detto, attribuita ad un’area diversa. Alcune delle stazioni considerate in passato sono state escluse dallo studio di quest’anno sia per la limitata disponibilità di dati per alcune variabili sul periodo considerato, sia per questioni di omogeneità areale delle temperature massime e minime (valutata in base ai criteri sopra esposti ). In Figura 3 è possibile vedere l’ubicazione geografica di tali stazioni: il colore e il tipo di simbolo utilizzato per marcarne la posizione sulla mappa specificano l’appartenenza di ogni stazione ad una delle cinque aree considerate (vedi legenda). Anche per gli indici di copertura nuvolosa, i valori areali giornalieri sono stati calcolati come media dei valori giornalieri stimati per le diverse stazioni appartenenti all’area. Si precisa che, poiché ciascuna singola serie presenta dati mancanti, le serie di valori giornalieri areali di Thi e Twc sono state calcolate utilizzando, rispettivamente, i valori areali di Tmax, Umin e di Tmin, vmed. Queste sono risultate più complete e realistiche rispetto alle serie areali ottenute mediando i valori di Thi e Twc relativi alle singole stazioni dell’area. Dato che l’obiettivo di questo studio è quello di valutare l’influenza delle variabili meteoclimatiche, in primo luogo della temperatura e delle grandezze da essa derivate, sulla domanda elettrica nazionale di cui si conoscono i valori cumulati su base mensile, si è proceduto dapprima al calcolo dei valori mensili areali delle variabili di interesse e, successivamente, alla creazione di serie di valori mensili nazionali. Sia per gli indici di copertura nuvolosa che per le temperature (massima, minima, apparente e di “Wind- Chill”), i valori areali mensili sono stati calcolati come somma dei valori areali giornalieri per tutti i giorni del mese. Qualora anche a livello areale manchino dei valori giornalieri (a causa, evidentemente, della mancanza di dati per tutte le stazioni di quell’area in un determinato giorno), il valore areale giornaliero viene stimato su base climatologica (si utilizza come stima il valor medio calcolato sui 5 giorni centrati sul dato mancante per tutti gli anni disponibili). Si precisa che l’incidenza di dati areali mancanti è comunque inferiore a pochi percento sull’intero periodo temporale considerato.
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 12/39 Tabella 1: Stazioni meteorologiche selezionate per il calcolo dei gradi giorno, raggruppate nelle 5 aree geografiche individuate. I nomi scritti in rosso corrispondono alle stazioni considerate anche nello studio dello scorso anno per le medesime aree. La stazione di Sarzana (in blu) era stata inclusa in passato nell’area NW. Longitudine Latitudine Area Nome stazione Codice stazione 13.07 45.98 NE UD Rivolto 16046 10.86 45.38 NE VR Villafranca 16090 11.52 45.57 NE Vicenza 16094 12.10 45.68 NE TV Istrana 16098 12.33 45.50 NE VE Tessera 16105 7.65 45.22 NW Torino Caselle 16059 8.66 45.50 NW Novara Cameri 16064 9.69 45.67 NW BG Orio al Serio 16076 9.28 45.43 NW MI Linate 16080 9.73 44.91 NW PC S.Damiano 16084 10.28 45.41 NW BS Ghedi 16088 9.98 44.08 AP Sarzana Luni 16125 11.30 44.53 AP Bologna Borgo Panigale 16140 12.61 44.03 AP Rimini 16149 10.38 43.68 AP Pisa S.Giusto 16158 11.20 43.80 AP Firenze Peretola 16170 13.36 43.61 AP Falconara 16191 11.05 42.73 AP Grosseto 16206 12.05 42.43 Ce Viterbo 16216 14.19 42.44 Ce Pescara 16230 12.58 41.80 Ce Roma Ciampino 16239 12.90 41.55 Ce Latina 16243 13.30 41.63 Ce Frosinone 16244 16.76 41.14 SeI Bari Palese 16270 17.95 40.65 SeI Brindisi 16320 14.21 37.08 SeI Gela 16453 14.91 37.40 SeI Catania Sigonella 16459 9.05 39.23 SeI Cagliari Elmas 16560
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 13/39 Distribuzione delle stazioni 47 16046 46 16076 16098 16064 16080 16094 16105 16088 16090 16059 16084 45 16140 16125 16149 44 16158 16170 16191 43 16206 16216 16230 Latitudine (gradi) 42 16239 1624316244 16270 41 16320 40 16560 39 38 16459 16453 37 36 7 8 9 10 11 12 13 14 15 16 17 18 Longitudine (gradi) Stazioni Nord-Est Stazioni Nord-Ovest Stazioni Alta-Penisola Stazioni Centro Stazioni Sud e Isole Figura 3: Ubicazione delle stazioni utilizzate per il calcolo dei gradi giorno.
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 14/39 E’ noto che esiste un intervallo di valori, approssimativamente centrato attorno ai 18 °C, in cui le variazioni della temperatura dell’aria non influenzano la domanda elettrica nazionale. Al di fuori di tale intervallo, invece, si osserva una crescita significativa della domanda sia al diminuire che all’aumentare della temperatura. Tale crescita risulta evidentemente correlata con l’uso degli impianti di riscaldamento elettrico in inverno e con quelli di refrigerazione in estate. La curva di risposta della domanda in funzione della temperatura dipende dalle caratteristiche climatiche della regione geografica alla quale la domanda è riferita ed è determinata principalmente dalla differenza tra la temperatura ambiente esterna e quella considerata confortevole negli ambienti interni (Carcedo et al., 2005). Il valore ‘indoor’ di riferimento non è tuttavia un valore che può essere considerato stabile e immutabile nel tempo anche per una stessa regione geografica, in quanto è influenzato anche da fattori socio economici quali il reddito della popolazione, il costo dell’energia,etc. Per valori di temperatura molto alti o molto bassi si possono anche osservare fenomeni di saturazione nella curva di risposta della domanda, che assume un andamento costante verso i valori estremi di T (Valor et. Al, 2001; Hor et al, 2005). Considerata la non linearità dell’andamento della domanda elettrica in funzione della temperatura sull’intero intervallo di variabilità di quest’ultima, un possibile approccio per introdurre la dipendenza dalla temperatura all’interno di un modello di regressione lineare multipla per la simulazione/previsione della domanda è quello di considerare la relazione tra domanda e temperatura solo e separatamente nelle fasce ‘calde’ o ‘fredde’. Più precisamente, la dipendenza della domanda dalla temperatura viene descritta in ciascuna fascia, assumendo che, in entrambe, la relazione sia di tipo lineare almeno in prima approssimazione. Dopo aver individuato due soglie per definire l’intervallo in cui le variazioni di temperatura non influiscono sulla domanda, sono create due diverse variabili, derivate dai dati di temperatura, da introdurre nel modello. Nel caso di modelli di simulazione su base mensile, la variabile utilizzata può essere semplicemente il valor medio nazionale della temperatura se questa è maggiore (o minore) del valore della soglia considerata. Un approccio alternativo, diffusamente applicato in modelli di questo tipo, è quello basato sul concetto di ‘grado giorno’ che consiste nel valutare per ogni giorno se e di quanti gradi la temperatura dell’aria è superiore (o inferiore) alla soglia considerata. A livello mensile tali valori sono poi cumulati. Dal momento che la definizione delle soglie è in qualche modo arbitraria, si possono ottenere diverse funzioni “gradi mese”. Per quanto riguarda il calcolo degli Heating Degree Month (HDM, ovvero gradi mese di riscaldamento) e dei Cooling Degree Month (CDM, ovvero gradi mese di raffrescamento) è stata sviluppata un’altra applicazione ‘ad hoc’ che consente di variare il valore delle soglie di temperatura utilizzate e, per ogni dato valore di soglia, di calcolare i CDM tramite sia la Tmax che la Thi e gli HDM utilizzando sia la Tmin che la Twc. Più precisamente i valori areali del grado giorno di raffrescamento sono calcolati come: Tmax = Tmax – Tsoglia (se Tmax >Tsoglia, altrimenti Tmax =0) o, alternativamente, come: Thi = Thi – Tsoglia (se Thi > Tsoglia altrimenti Thi = 0) I valori CDM mensili sono poi ottenuti sommando i Tmax (o rispettivamente i Thi) relativi a tutti i giorni del mese. Il calcolo è stato effettuato per diversi valori di soglia (passo 1°C) all’interno dell’intervallo 24- 32°C.
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 15/39 Analogamente, per ogni dato valore di soglia, i valori areali del grado giorno di riscaldamento sono stati calcolati utilizzando alternativamente la Tmin e la Twc, nel seguente modo: Tmin = Tsoglia - Tmin (se Tmin < Tsoglia, altrimenti Tmin =0) Twc = Tsoglia – Twc (se Twc < Tsoglia altrimenti Twc = 0) Il calcolo è stato ripetuto per diversi valori di soglia (con passo di 1 °C) all’interno di un intervallo tra -2 e +4 °C. I valori HDM mensili sono poi stati ottenuti sommando i Tmin (o rispettivamente i Twc) relativi a tutti i giorni del mese. Come controllo sulla qualità delle serie mensili ottenute, sia per i CDM che per gli HDM è stato calcolato, per ogni mese, il numero di dati giornalieri effettivi presenti (esclusi cioè quelli introdotti in sostituzione dei dati mancanti). Infine sono state generate le serie mensili di valori nazionali sommando i valori mensili areali. 2.2 Rappresentazione del calendario Il numero effettivo di giorni lavorativi presenti in ciascun mese può influenzare l’andamento delle variabili economiche con pesi diversi e con effetti anche contrapposti. Nel caso specifico della domanda elettrica, fortemente correlata con la produzione nel settore industriale, un giorno lavorativo in più determina, a parità di ogni altra condizione, un significativo incremento della domanda. I valori della domanda in mesi corrispondenti di anni diversi possono quindi essere sensibilmente differenti soprattutto a causa della variabilità del numero di giorni lavorativi presenti nel mese. Pertanto è molto importante valutare l’effetto del calendario per rilevare l’eventuale influenza delle variabili meteoclimatiche nelle serie storiche dei dati di domanda elettrica. In questo studio è stato attribuito lo stesso peso a tutti i giorni lavorativi dal lunedì al venerdì, mentre i sabati sono stati considerati festivi allo stesso livello delle domeniche e delle altre festività nazionali. Si tratta evidentemente di una prima approssimazione, in quanto i sabati non sono totalmente equiparabili ai giorni di festa, inoltre i feriali immediatamente precedenti e successivi ai fine settimana e alle festività sono generalmente caratterizzati da un diverso livello di attività nei settori industriali e commerciali e quindi dovrebbero essere ‘pesati’ diversamente dagli altri giorni feriali. L’effetto di alcune festività come Pasqua e Natale, inoltre, si ripercuote anche su più giorni lavorativi sia precedenti che successivi, con una certa variabilità annuale che può dipendere nel caso della Pasqua dalla vicinanza con altre festività nazionali e nel caso del Natale con la collocazione all’interno della settimana. Effetti di questo tipo, difficili da valutare, non sono stati considerati in questo studio. La rappresentazione del calendario su base mensile all’interno del modello utilizzato, descritto nel prossimo capitolo, può essere effettuata in diversi modi. Nel precedente Piano di Realizzazione si è scelto di utilizzare il conteggio dei giorni lavorativi e dei giorni festivi, mentre quest’anno si è optato per caratterizzare ciascun mese tramite la differenza tra il numero di giorni lavorativi e festivi e la variabile numero di giorni. Il motivo di questa scelta, discusso più approfonditamente nel seguito, è legato alla opportunità di utilizzare variabili con un basso grado di correlazione reciproca come variabili indipendenti di una regressione lineare multipla, per evitare problemi di “quasi collinearità statistica”. Si è peraltro verificato, eseguendo delle simulazioni di confronto, che si ottengono i medesimi risultati con entrambe le scelte delle variabili.
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 16/39 3 DESCRIZIONE DEL MODELLO La metodologia di elaborazione e analisi dei dati eseguita al fine di produrre le simulazioni (o le previsioni) a medio termine della domanda elettrica mensile nazionale è di seguito riepilogata (Apadula et al., 2008b; 2009; 2010). La simulazione (ma in analoga maniera la previsione) realizzata si basa in una prima stima effettuata imponendo un semplice criterio di proporzionalità: la costanza del rapporto tra due mesi consecutivi di due anni consecutivi. In questo modo la previsione del mese “m” e anno “a” si ottiene, semplicemente, mediante la seguente relazione: P0m,a = Cm-1,a • Cm.a-1 / Cm-1,a-1 in cui P0 indica la previsione al livello zero che denomineremo “provvisoria” e con C si identificano i valori di consuntivo della richiesta elettrica mensile nazionale. Si assume poi, in maniera semplice ma non completamente realistica, che i valori del rapporto tra il dato di consuntivo reale Cm,a e quello della previsione “provvisoria” P0m,a siano ascrivibili sostanzialmente all’effetto della variabilità meteoclimatica e del calendario. La simulazione (o previsione) mensile della richiesta elettrica nazionale è poi affinata utilizzando una Regressione Lineare Multipla (in seguito RLM), in cui le variabili indipendenti sono costituite da grandezze derivate dalle variabili meteoclimatiche (temperatura media mensile nazionale, gradi giorno di riscaldamento o raffrescamento, copertura nuvolosa) e calendario (numero di giorni e valore differenza tra i giorni lavorativi e festivi di ciascun mese). Essa è calcolata mediante la seguente relazione: P m,a RLM = P0m,a • (1 + R RLM) in cui R, al variare del mese “m” e anno “a”, é la variabile dipendente del modello RLM, rappresentata da R m,a = (C0m,a / P0m,a) - 1 La variabile R è quindi stimata mediante la RLM riportata di seguito: R R RLM = τ + C1 + C2 + M1 + M2 + M3 in cui sono presenti al massimo due variabili calendario, indicate con C1 e C2, e tre variabili meteorologiche, rappresentate da M1, M2 e M3. , , , e sono i coefficienti della regressione lineare multipla e τ è il termine noto. Le variabili indipendenti Ci e Mj (con i = 1,2 e j = 1,3) rappresentano le grandezze derivate a partire dalle variabili calendario e meteorologiche. Più precisamente, indicata genericamente con Vm,a una variabile meteorologica o di tipo calendario relativa al mese m e anno a, la variabile derivata di valori mensili V da inserire nel modello viene calcolata tramite la relazione: V = (Vm,a - Vm-1,a) – (Vm.a-1 - Vm-1,a-1 ) L’influenza delle diverse grandezze meteorologiche è stata introdotta nel modello attraverso tre sole variabili, di cui due legate alla temperatura dell’aria (reale o percepita) ed una relativa alla copertura nuvolosa.
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 17/39 Considerando che la domanda elettrica è influenzata sostanzialmente dai valori delle temperature tipiche della stagione invernale e estiva, cioè dalle temperature fredde e calde, l’approccio più semplice è quello di definire le variabili ‘temperatura di riscaldamento’ Th (“Temperature of heating” ) e “temperatura di raffrescamento” Tc (“Temperature of cooling”) sulla base dei dati di temperatura media mensile nazionale (fonte TERNA). Identificate con 15° e 20°, rispettivamente, le soglie per le temperature fredde e calde, le nuove variabili Th e Tc sono ottenute dalla serie delle temperature medie mensili nazionali (T) nel seguente modo: • Th = T se T < 15 °C altrimenti (se T 15 °C) Th = 15 °C; • Tc = T se T > 20 °C altrimenti (se T 20 °C) Tc = 20 °C. L’identificazione dei valori delle soglie è stata ottenuta eseguendo diverse elaborazioni e analisi mediante la RLM e i valori che forniscono risultati migliori, in genere, sono proprio quelli citati in precedenza (Apadula et al., 2009). Un altro approccio (utilizzando i dati giornalieri del CNMCA) è quello basato sul calcolo dei gradi giorno di riscaldamento e raffrescamento cumulati per ogni mese, indicati nel seguito con HDM e CDM (“Heating and Cooling Degree Month”). Come descritto nel precedente capitolo, i valori mensili nazionali dei gradi giorno sono stati calcolati sulla base di stime areali delle temperature massime e minime giornaliere. L’uso degli estremi della temperatura giornaliera su diverse aree spaziali, infatti, presuppone il vantaggio, non trascurabile, di rendere il modello per la previsione della domanda elettrica mensile più sensibile alla variazione della temperatura in funzione della latitudine e della longitudine. Da notare che la definizione dei gradi giorno normalmente applicata in letteratura, anche in contesti analoghi di previsione/simulazione della domanda elettrica (Hor, 2005) fa riferimento al valore della temperatura media giornaliera, mentre in questo studio si utilizzano gli estremi giornalieri della temperatura, che a nostro avviso maggiormente evidenziano l’effetto di questa variabile sulla domanda elettrica. Il calcolo dei gradi mensili di raffrescamento (CDM) e di riscaldamento (HDM) è stato effettuato come spiegato in precedenza. I valori di soglia utilizzati per le simulazioni sono, rispettivamente, 26 °C per la temperatura massima e 1°C per quella minima. Tali valori di soglia sono il risultato dell’analisi e delle valutazioni di ottimizzazione effettuate lo scorso anno (Apadula et al., 2009). Detti valori, ovviamente, sono alquanto differenti da quelli usati per le temperature medie mensili nazionali poiché le variabili considerate sono concettualmente e sostanzialmente diverse. Per tenere conto dell’effetto dell’umidità relativa e della velocità del vento, i gradi giorno sono stati anche calcolati (CDMhi e HDMwc) utilizzando anche degli indici biometeorologici “Heat Index” e “Wind Chill Index” (Apadula, 2004). L’ultima variabile meteorologica considerata è rappresentata dalla copertura nuvolosa, valutata per l’intera giornata (Cdt , “Cloudiness during daytime”) o, alternativamente, per le fasce orarie relative all’alba e al tramonto (Cdt , “Cloudiness at the dawn and sunset time” ). Come già descritto in precedenza, l’informazione relativa alla copertura é rappresentata tramite un indice che accumula gli eventi giornalieri per cui la copertura nuvolosa, espressa in ottavi, assume un valore maggiore di 6. Il valore dell’indice su ciascuna delle cinque aree e poi sommato per ottenere il valore mensile nazionale che è poi utilizzato come variabile indipendente nella RLM. Nel seguente capitolo saranno illustrate le varie analisi effettuate considerando diverse combinazioni delle variabili derivate dalle grandezze meteoclimatiche.
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 18/39 4 SIMULAZIONI E ANALISI DEI RISULTATI L’attività è stata focalizzata sulla valutazione delle simulazioni ottenute utilizzando diverse variabili meteorologiche come input della RLM. A tale riguardo, partendo dai risultati conseguiti lo scorso anno (Apadula et al., 2009), si è deciso, per quanto possibile, di ampliare il numero di stazioni di misura da utilizzare e di inserire tra le variabili in ingresso anche l’umidità relativa, la velocità del vento e la copertura nuvolosa. Pertanto ai dati già disponibili, si sono aggiunti anche i dati tri-orari dei messaggi SYNOP e sono state aggiornate le serie giornaliere delle temperature massime e minime sino a fine anno 2008 (dati forniti sempre dal CNMCA, Centro Nazionale di Meteorologia e Climatologia Aeronautica). A beneficio del lettore, si ricorda che i valori di soglia assunti quali migliori per ciascuna variabile meteoclimatica (temperature o gradi giorno) sono quelli che migliorano il risultato della simulazione (o previsione) valutato in termini dell’indice di qualità della previsione denominato “MAPE” (Mean Absolute Percent Error). L’indice MAPE è frequentemente usato per valutare la qualità della simulazione/previsione del carico elettrico ed è rappresentato dalla media dei valori assoluti degli errori relativi in percentuale. I valori di soglia usati, pertanto, sono quelli che rendono minimo l’indice MAPE, ovvero tramite i quali si ottiene un migliore accordo tra la simulazione della domanda elettrica mensile nazionale e il reale valore consuntivato. Per ogni anno da simulare, è stata eseguita la regressione lineare multipla degli 11 anni di dati precedenti al fine di ricavare i coefficienti della regressione. Utilizzando i dati reali di calendario e meteorologici e i suddetti coefficienti, è stata poi effettuata la simulazione dell’anno. Lo scopo principale dell’attività è stato quello di valutare se le nuove variabili meteorologiche introdotte producono risultati migliorativi delle simulazioni in termine di MAPE. L’uso degli 11 anni su cui si esegue la RLM deriva anch’esso dai risultati di ottimizzazione ottenuti lo scorso anno (Apadula et al., 2009). Allo scopo di individuare l’insieme delle variabili da utilizzare nella RLM si è eseguita, preventivamente, un’analisi della correlazione delle varie serie mensili prodotte. Di seguito (Tabella 2) è riportata la matrice di correlazione relativa alle 15 differenti variabili considerate (4 variabili calendario e 11 meteorologiche), utili per produrre le simulazioni della domanda elettrica mensile nazionale. Le serie trattate coprono quasi l’intero periodo disponibile, ad accezione dei primi anni. A beneficio del lettore riportiamo di seguito la legenda (Tabella 3) in cui si definiscono le variabili trattate e l’acronimo identificativo utilizzato, in seguito, anche nei grafici che illustrano l’andamento del MAPE. Per quanto riguarda la rappresentazione del calendario sono state valutate due possibili scelte di variabili: la prima, già utilizzata lo scorso anno, considera il conteggio su base mensile dei giorni lavorativi (WD) e dei giorni festivi (HD); la seconda, invece, caratterizza ciascun mese tramite la differenza tra il numero di giorni lavorativi e festivi (dWH) e la variabile numero di giorni ND. Analizzando la matrice di correlazione si osserva che le variabili calendario WD e HD sono tra loro molto correlate (-0.989) a differenza della coppia di dWH e ND (coefficiente di correlazione pari a 0.018). Per evitare possibili problemi di “quasi collinearità statistica” si è quindi optato per la seconda coppia di variabili. Si è comunque verificato che con entrambe le coppie si ottengono, a parità di ogni altra condizione, risultati analoghi sia in termini di R2, sia per quanto riguarda la significatività statistica dei coefficienti delle variabili della regressione, sia in termini di MAPE risultante dalla simulazione. Tra le variabili legate alle temperature minime (o massime) si evincono valori molto elevati dei coefficienti di correlazione. Parimenti anche le due variabili legate alla copertura nuvolosa (Cds e Cdt) risultano altamente correlate (0.996). In particolare, per le temperature si ottengono correlazioni molto alte all’interno dei seguenti due gruppi di variabili: a) Th, HDM, HDMwc e HDMold e b) Tc, CDM, CDMhi e CDMold.
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 19/39 Tabella 2: Matrice di correlazione tra le variabili considerate in questo lavoro. In rosa sono evidenziati i coefficienti compresi tra 0.8 e 0.9 e in giallo quelli di 0.9. Tabella 3: Legenda identificativa delle variabili considerate. Alla luce di queste considerazioni e sulla base dei risultati già ottenuti lo scorso anno tramite le variabili meteorologiche Th, Tc, HDMold e CDMold e le variabili calendario WD e HD, la nostra attenzione é stata focalizzata soltanto su un numero ristretto di variabili non strettamente tra loro correlate. In conclusione, le variabili utilizzate, allo stato attuale dell’attività, sono quelle che hanno finora fornito i migliori risultati, in particolare: ND, dWH, Th e Tc, (con valori aggiornati al 2008), HDM, CDM, CDMhi e Cds. Si è poi considerata l’opportunità di introdurre nella RLM anche delle variabili di tipo prettamente socio-economiche, quali ad esempio il PIL (Prodotto Interno Lordo), l’indice di Produzione Industriale, di Fatturato e Nuovi Ordinativi come desunti dal database CONISTAT (fonte ISTAT). Per quanto riguarda il PIL, considerato l’approccio modellistico adottato, si è ritenuto che il tipo di informazione idonea, tra quelle disponibili nella suddetta banca dati, fosse quella contenuta nelle serie storiche grezze concatenate, in cui i valori di PIL sono espressi in termini reali attraverso un sistema di
09004598 Rapporto ASV Ambiente e Sviluppo Sostenibile Pag. 20/39 deflazione a base mobile. La più elevata risoluzione temporale con cui sono disponibili questi dati è però trimestrale, mentre il modello di simulazione utilizzato richiede dati a risoluzione mensile: le prove effettuate introducendo valori mensili estrapolati tramite semplice ripartizione e/o interpolazione dei dati trimestrali non hanno dato risultati incoraggianti. Nel caso delle altre variabili è invece risultata insufficiente l’estensione temporale delle serie storiche (disponibilità dei dati su base mensile a partire, rispettivamente, dal 1996 e dal 2000). Non ultimo, è anche importante far rilevare l’elevato grado di correlazione riscontrato, sulla base dei dati in questo momento disponibili, tra la variabile WD e l’indice di Produzione Industriale (pari a 0.884). Infine, alcune elaborazioni eseguite in modo estemporaneo con la variabile Fatturato e Nuovi Ordinativi, considerando una RLM su soli 7 anni di dati pregressi hanno mostrato che tale variabile non sembra svolgere un particolare ruolo sulla richiesta elettrica mensile nazionale. Il fatto che l’indice di Produzione Industriale sia correlato alla variabile giorni lavorativi (WD) è del tutto ovvio poiché la variabile calendario, concettualmente, appartiene all’insieme delle variabili socio-economiche anche se usualmente viene definita in maniera autonoma e indipendente. Definite le serie temporali delle variabili meteoclimatiche e calendario da utilizzare, si è proceduto alla elaborazione mediante RLM per ottenere la simulazione della domanda elettrica mensile nazionale e il valore di accuratezza della simulazione espressa mediante l’indice di qualità MAPE. Le simulazioni sono state effettuate eseguendo la RLM sugli undici anni precedenti a ciascun anno da simulare e inserendo varie combinazioni di variabili indipendenti per ogni anno. Le elaborazioni e le analisi sono state eseguite sugli anni più recenti (2000-2008) e per ciascun anno e mese dell’anno è stato ricavato il valore del MAPE al fine di produrre per ogni set di variabili indipendenti utilizzate opportuni confronti. Per mettere in luce l’efficacia delle variabili introdotte nelle simulazioni, è stato introdotto anche il MAPE relativo alla previsione/simulazione provvisoria P0. Si precisa, infine, che i dati riguardanti i valori di consuntivo della domanda elettrica mensile nazionale (fonte TERNA) dell’anno 2008 sono suscettibili di modifica poiché considerati ancora non definitivi. Nei grafici riportati da Figura 4 a Figura 12 è possibile confrontare i valori del MAPE ottenuti effettuando le simulazioni mediante il criterio del semplice rapporto (P0) e mediante la RLM eseguita con i seguenti gruppi di variabili indipendenti: ND-dWH; ND-dWH-HDM-CDM; ND-dWH-HDM- CDM-Cds. Ciascuna figura mostra il confronto dei valori MAPE ottenuti per ciascun mese e per l’intero anno. In queste figure è, pertanto, possibile apprezzare qual è il grado di miglioramento della simulazione quando s’introducono le variabili meteorologiche. Infatti, considerando l’ultimo gruppo d’istogrammi inserito in ciascuna figura (una per ogni anno: dal 2000 al 2008) riguardante il valore medio annuale del MAPE si evince chiaramente un miglioramento dell’accuratezza delle simulazioni eseguite introducendo le variabili meteorologiche. Il miglioramento è circa compreso tra 0.8% e 1.9%, salvo per il 2005 in cui la P0 fornisce un MAPE leggermente migliorativo rispetto alle restanti simulazioni. In particolare, il valore massimo di miglioramento corrisponde alla diminuzione del MAPE da 3.3% (P0) a 1.4% (con l’uso delle variabili meteorologiche) che si riscontra nel 2008 (Figura 12). Il minimo miglioramento si osserva nel 2007 (Figura 11) e corrisponde ad una riduzione del MAPE da 1.8% (P0) a circa 1% (con variabili meteorologiche). Sull’intero periodo analizzato, il miglioramento del MAPE medio annuale è di circa 1.1% (si passa da 2.3% a 1.2%). Considerando i valori mensili sono apprezzabili diversi netti miglioramenti specie nei mesi estivi che però non restano sistematici per l’intero periodo considerato (2000-2008). I mesi che presentano maggiore sistematicità nel miglioramento del MAPE utilizzando le variabili meteorologiche nella RLM sono: il mese di Maggio (con miglioramenti tra 0.3 e 5%, con l’eccezione del 2005 che mostra un peggioramento del MAPE intorno al 1%) e il mese di Settembre (con miglioramenti tra 0.3 e 7%, con l’eccezione del 2006 che mostra un lieve peggioramento del MAPE). Per una valutazione maggiormente realistica dell’andamento del MAPE mensile è opportuno riferirsi al grafico di Figura 35 in cui oltre alla simulazione P0 vi sono molteplici combinazioni di variabili indipendenti utilizzate per la simulazione mediante RLM. In questa figura, in cui si valutano i valori del MAPE medio riguardante l’intero periodo in studio (2000-2008), si evince, molto chiaramente, che il miglioramento della simulazione della
Puoi anche leggere