DS-20k Cryogenic system Simulation for CERN safety review - Marco Carlini (GSSI and CERN) Sandro De Cecco (Sapienza & INFN Roma 1) Tonino Zullo ...
←
→
Trascrizione del contenuto della pagina
Se il tuo browser non visualizza correttamente la pagina, ti preghiamo di leggere il contenuto della pagina quaggiù
DS-20k Cryogenic system Simulation for CERN safety review Marco Carlini (GSSI and CERN) Sandro De Cecco (Sapienza & INFN Roma 1) Tonino Zullo (INFN Roma 1) Xiang Xiao (UCLA) June 18th 2019 Sandro De Cecco 1
Outline • DS-20k cryogenics system condenser box study for CERN safety review. • Agreed to perform a static thermo-mechanical FEA simulation with agreed conditions : normal operation, and/or extreme/transient Vacuum breaking conditions, defined in temperature and pressures loads table with safety factors. • Seismic load included as well with LNGS acceleration profile. • Grounding feet now included in the model. • Started from 3D model of the full condenser box and convert it to a surface based model : every 3D object is converted into a surface and then set the thickness. (Long work, took ~1.5 months … complicated model). Meshing successful, ready for FEA. • Full set of simulations is now ready for CERN safety review • Results are shown in this presentation. June 25th 2019 Sandro De Cecco 2
Load case in Nominal Operation, 3D model with T Input of LN2 Closed in Nominal Operation Input of Cold GAr from detector Condenser 87.3 K Average T: 77 K 149.0 K Heat exchanger (x5) 88.9 K Average T: 107.9 K Output of GAr/LAr mixture from condenser Blocked in Nominal Operation June 25th 2019 Sandro De Cecco 32
Component List • Condenser: 1 • Heat exchangers: 5 • {Radon trap: 1} • {Particulate filter: 1} • Cryogenic valves: 8 • Bayonet ports: 6 • Pressure transducers: 4 • 1” tubing and fittings: # • Vacuum vessel: 1 June 25th 2019 Sandro De Cecco 4 3
Condenser Unit • Heat Exchange between Liquid Argon and Liquid Nitrogen is on the wall of 127 ½” tubes of 7” long. • Tube are caped blank on top • Bottom welded onto a plate with 127 holes. • Estimated cooling power of ~8 kW (latent heat only) More information about this condenser concept can be found in the following two links: https://drive.google.com/file/d/0B5pEl2jJ08CoNDMxV2lJVW9ON1k/view ?usp=sharing https://drive.google.com/file/d/1nu35z2qw6XkuoDVmyrWJshQR784kM_ zO/view?usp=sharing 4 June 25th 2019 Sandro De Cecco 5
Heat Exchanger Original engineer drawing: https://drive.google.com/open?id=1Jo6Mukn_sR2X9isEIYD091d23yHbcrGk Quote: https://drive.google.com/open?id=10QK_lDG7RcFhqvW6Sm2l27cV067yu2_z Arrived at CERN Certificate from the company: https://drive.google.com/file/d/1ynygH7tY2-ABvzMLizAU9FqGk0NJRpZu/view?usp=sharing June 25th 2019 65 Sandro De Cecco
DS-20kP&ID cryogenics test setup of the DS-20k Cryogenics scheme test setup LN2 supply system P&ID can be found at: EDMS 2140490 5 Normal pressure: 1 barg, 1 2 3 4 Relief pressure: 3 barg 9 8 7 6 Original PDF (HQ versioin): June 25th 2019 7 Sandro De Cecco EDMS 2131840
Interface and Parameters Static loads (P and T) updated values table Refer to the P&ID in previous page for interface marks Interface Design Relief Normal Operation Normal Operation Purge Pressure Transport Seismic BIV Interface Products number Pressure pressure Pressure Temperature test load load bara barg bara K Condenser box LN2 side 2.5 1.5 2 80-85 X X X X Condenser box LAr side 1.5 0.5 1.2 88 X X X X LN2 supply 1 2.5 1.5 2 80-85 X X X X X GN2 return 2 2.5 1.5 2 80-85 X X X X GAr boil-off cold 6 1.5 0.5 1 88 X X X X X GAr boil-off warm 4 1.5 0.5 1 300 X X X X X LAr supply 5 1.5 0.5 1.2 88 X X X X X X LAr mixture 7 1.5 0.5 1.2 88 X X X X X X GAr purified 3 2 1 1.7 300 X X X X X Vacuum vessel 1.1 0.1 0 300 X X X X LAr Condenser Safety relief port 8 1.5 0.5 1.5 90-300 X X X X X LN2 Condenser Safety relief port 9 2.5 1.5 2.5 85-300 X X X X Normal operation values used in the simulation for the time being, possible to change June 25th 2019 Sandro De Cecco 8
Definition of Load Cases Definition of load cases Scenarios (defined by code EN 13445 for unfired pressure vessels and EN 13480 for metallic piping): • Nominal operation (NO, at pressure and temperature operation) • Pressure test (PT) • Purge and flushing operation (PG) • Break of Insulation Vacuum (BIV) • Seismic events (SL) Combination of Load Cases • Transport (TA) Load combinations Damage limits Design criteria level (defined in next slide) EN 13480 EN 13445 Dead weight (G) Normal Normal Normal Assembly Load Normal Normal Normal NO Normal Normal Normal PT Test Test Test PG Normal Normal Normal NO+BIV Emergency Exceptional Exceptional NO+SL Upset Occasional Occasional NO+SL+BIV Emergency Exceptional Exceptional June 25th 2019 TA Normal Occasional Occasional 96 Sandro De Cecco
AZIONE SISMICA E=azione sismica; PerG 2= carichi della permanenti pericolosità sismica delnon strutturali effettuata una(strumentazione). ANALISI STATICA Seismic load definition l’individuazione sito è stata SLD ricerca per 0,101 2,325 0,283 coordinate geografiche che per i Laboratori Nazionali del Gran G1=carichi permanenti strutturali (es. peso proprio dell’ac Sasso sono le seguenti: SLV 0,254 2,363 0,343 Iil sisma dovrà essere considerato nelle quattro direzioni di ingresso principali (0°, 90 Tabella 1: Latitudine e Longitudine delle gallerie sotterranee. e 270° rispetto Latitudine [ With 42,460 all’asse the help Longitudine G = carichi of Umberto longitudinale 13,550 2 permanenti delDifabbricato), non Sabatino (LNGS) ] L’azione strutturali combinate sismica (strumentazione). tra di loro e con la po ISMICA torcente La Vita Nominale sceltaaddizionale è stata di 50 anni mentre accidentale la Classe Iild’uso sisma comedovrà individuata daessere è la seconda normativa (nella considerato forzante caso nelle inquattro esame sismica viste led direzioni alla Elastic quale duazione dimensioni è associato chehorizontal riferimento della geografiche un della pericolositàinsismica coefficiente pianta per i Laboratori acceleration costruzione è risultato d’uso pari ad 1. pari a dell’apparato 50 anni ( V =e Nazionali del Gran Sasso R N Conseguentemente del sito è stata effettuata u ⋅270° V spectra C ). siuna sono le il periodo potrebbe rispetto at LNGS: seguenti: di (dovuto all’asse longitudinale ai carichicom ricerca per evitare (da valutare)), oltre che con l del fabbricato), v Conazioni riferimento di alle tipo indaginipermanente geologiche generali deied accidentale. torcente addizionale accidentale come da normativa (n Tabella la1: categoria sotterranei Latitudinediesuolo Longitudine delleipotizzata che è stata Laboratori gallerie sotterranee. Nazionali Gran Sasso è quella di classe “A”, mentre la Quindi si ottiene: Latitudine categoria topografica è di tipo T1. Longitudine dimensioni in pianta dell’apparato si potrebbe evitare (da Per tali valori42,460 di coordinate geografiche ed in13,550 azioni di tipo permanente ed accidentale. corrispondenza dei periodi di ritorno W ( ) considerati, si ottengono i valori dei parametri riportati in tabella 5. ANALISI STATICA Tabella 2: Valore dei parametri inLINEARE funzione dello stato limite considerato. Fh = S d T1 ⋅ ⋅ λ minale scelta è Limite Stato stata di 50 anniagmentre [g] la ClasseF0d’uso [-] individuata è la seconda Tc* [sec] g L’azione è associato un sismica coefficiente 0,101 potrà essere d’uso pari ad 1. 2,325 modellata Conseguentemente 0,283 come una forza sismica equivalente. In parti il periodo di della costruzione è risultato pari a 50 anni ( VR = V N ANALISI STATICA LINEARE SLD ⋅ Cu ). la forzante “Life save” SLV sismica F h si determina moltiplicando la massa associata al carico gravitaz 0,254 2,363 mento alle indagini geologiche generali dei Laboratori Nazionali Gran Sasso L’azione 0,343 Nel caso in esame (dovuto la categoria di suoloai checarichi verticali, è stata ipotizzata di classesismica permanenti è quella potrà “A”,e mentre variabili) la essere per modellata come l’accelerazione Figura 1: Spettri elastici orizzontali. una forza spettrale di prs opograficaQuindi si ottiene: la forzante sismica Fh si determina moltiplicando la massa ( ) è di tipo T1. Complying to norm NTC 2018: model seismic action as an equivalent alori di coordinate geografiche ed in corrispondenza (dovuto S T static =a aiacceleration carichi dei periodi verticali, di ritorno permanenti e e variabili) g ⋅ S ⋅ηper ⋅ Fl’ac 0 = linear force obtained W combining seismic to total gravitational (T1 ) ⋅ in⋅toλfunzione i, si ottengono i valori dei parametri riportati in tabella 5. charge Fh =WS dapplied the dello center Quindi si ottiene: ofconsiderato. mass (in the worse case SLC “collapse”): g Tabella 2: Valore dei parametri stato limite W = 5, 7 kN W S d (sfavorevole): T1 ) ⋅ ⋅ λ Limite ag [g] F0 [-] Tc* [sec] Nel caso in esame (condizione Fh =più LD 0,101 2,325 g 0,283 Da questo ne conse LV Se (T ) =0,254 ag ⋅ S ⋅η ⋅ F0 = 0, 2,363 750 g Nel caso in0,343 esame (condizione più sfavorevole): —> Total force applied: Fh = 4, 275 kN W = 5, 7 kN Se (T ) = ag ⋅ S ⋅η ⋅ F0 = 0, 750 g June 25th 2019 Figura 1: Spettri elastici orizzontali. Sandro De Cecco 10 Da questo ne consegue cheWla=forza Questa 5, 7 kNsismica da considerare allo SLV forzante sarà pari a do
Seismic load calculations Safety factors in agreement with NTC2018: γ = 1.2 for internal pressures and permanent loads γ = 1.0 for external pressures (vacuum) and exceptional loads Seismic combinations: —> -full force x + 30% y component -full force y + 30% x component For both +- x and +- y June 25th 2019 Sandro De Cecco 11
Worse load case: Seysmic+Vac.Break+Norm.Operations Safety factors (~1.2) complying with EN 13445 has been applied to all positive pressures when required, and factor of 1 to vacuum and temperatures loads June 25th 2019 Sandro De Cecco 12
Surface based design - applying loads Temperature and pressure loads are applied to surfaces corresponding to the load table points. Example (in red) inner surface of pipe n.4 (GasAr boil off warm) T= 300K, P = 1 bara Masses of the 5 exchangers + condenser are obtained with simple boxes of given 13 with matching mass. Correct weight applied to condenser box.
Thermic load - outer vessel Thermic equilibrium: all external vessel and feets to ambient temperature. June 25th 2019 Sandro De Cecco 14
Thermic load - internal Thermic equilibrium: Internal elements temperatures ranges between 77 K and 300K Minimum on LN2 in pipe on the top June 25th 2019 Sandro De Cecco 15
Deformation analysis - outer vessel Deformation on the vessel shows < 0.7 mm June 25th 2019 Sandro De Cecco 16
Deformation analysis - x axis Max X deformation is see at T pipe, corresponding to a max displacement of ~ 1.9 mm. June 25th 2019 Sandro De Cecco 17
Deformation analysis - y axis Max deformation is see at this “T” pipe, corresponding to a max displacement of ~ 1.3 mm. June 25th 2019 Sandro De Cecco 18
Deformation analysis - z axis Max deformation is see at this vertical pipe, corresponding to a max displacement of ~ 2.6 mm. June 25th 2019 Sandro De Cecco 19
Total deformation internal Max Total deformation is see at this vertical pipe, corresponding to a max displacement of ~ 2.8 mm dominated by z deformation —>recovered with bellow on pipe bottom: June 25th 2019 Sandro De Cecco 20
Total deformation video: June 25th 2019 Sandro De Cecco 21
Stress analysis - outer vessel Stress analysis, top view maximum on the dome. (not critical, within SS elastic range) June 25th 2019 Sandro De Cecco 22
Stress analysis - internal Max stress is found on T pipe. Not critical tough June 25th 2019 Sandro De Cecco 23
Buckling analysis 1st main mode - external June 25th 2019 Sandro De Cecco 24
Buckling analysis 1st main mode - internal The 1st, 2nd and third main buckling modes are seen on the outer vessel flange. Buckling is in the very safe side : multiplier ~9 June 25th 2019 Sandro De Cecco 25
NO+BIV+Seismic loads calculations results June 25th 2019 Sandro De Cecco 26
DS-20k Cryogenics simulation conclusions Static FEA simulation results in this presentation corresponds to : normal operations + vacuum insulation breaking + seismic loads —> No critical showstoppers appears. - Both stress and deformation analysis give small deformations (~1mm) and stresses (~180 MPa). Structural Stainless Steel elastic range is up to 400 MPa. - Seismic reactions on feet to be calculated (based on this simulation) and certified by LNGS engineer Umberto Di Sabatino. His report will be included in documentation. - Coherently no critical buckling is observed in the whole system, multipliers of first 3 modes up to ~9. In conclusion we consider this full simulation gives satisfactory and reinsuring results in terms of safety versus static structural stresses in normal operations + vacuum insulation breaking + seismic which is by definition the worse limit case. (big thank to Marco Carlini, Tonino Zullo and Xiang Xiao) —> Ready to compile full documentation and submit to CERN safety review for DarkSide-20k cryogenic system construction start. 27 June 25th 2019 Sandro De Cecco
Puoi anche leggere