Dr. Rocco Goffredo "Analisi Biochimica della Regione Parziale D-LOOP, RNA12s, tRNA phe del mtDNA in pazienti con Sindrome Metabolica"

Pagina creata da Claudia Palmieri
 
CONTINUA A LEGGERE
“Analisi Biochimica della Regione Parziale D-LOOP,
  RNA12s, tRNA phe del mtDNA in pazienti con
              Sindrome Metabolica”

             Dr. Rocco Goffredo
      Chimica Clinica, P.O. Barletta – ASL BAT -

                                                   0
IL RUOLO DEL DNA MITOCONDRIALE NELLE MALATTIE
                                 MOLECOLARI

      Recenti studi dimostrano che non solo le mutazioni del DNA
cromosomico ma anche quelle del DNA mitocondriale sono causa di anomalie
fenotipiche. Ora si sa che disturbi nel metabolismo mitocondriale giocano un
ruolo non solo in rare malattie infantili, ma sono anche coinvolte in molte
malattie comuni dell'invecchiamento, incluse malattie del cuore, diabete,
malattia di Parkinson e demenza. I mitocondri sono i soli organelli cellulari che
si sapeva avere un loro DNA (DNA mitocondriale o mtDNA), distinto dal DNA
nucleare (nDNA). Sono organelli a doppia membrana presenti all’interno delle
nostre cellule che contengono gli enzimi del ciclo di Krebs, svolgono la
fosforilazione ossidativa e sono coinvolti nella biosintesi degli acidi grassi. La
loro funzione principale è quella di produrre energia mediante un processo
metabolico chiamato fosforilazione ossidativa (OXPHOS). Il processo di
(OXPHOS) avviene nella membrana interna dei mitocondri mediante una serie
sequenziale di reazioni d’ossidoriduzione eseguite dai quattro complessi
enzimatici della catena respiratoria. Ciascun mitocondrio é fatto su misura per
far fronte ai bisogni della cellula nella quale risiede. In effetti, ci sono differenti
mitocondri con funzioni metaboliche specializzate per molte dei 250 diversi tipi
di cellule nel nostro corpo. La maggior parte delle cellule nucleate del nostro
corpo contiene da 500 a 2000 mitocondri. Nel cono fotorecettore dell'occhio, i
mitocondri costituiscono fino all'80% del volume intracellulare. Nei muscoli
extraoculari come il lateral rectus, essi raggiungono il 60% e nel muscolo
cardiaco essi rappresentano il 40% del volume della cellula. Alcuni tipi di
cellule hanno solo pochi mitocondri. Le piastrine, per esempio, hanno solo da
due a sei mitocondri. I globuli rossi del sangue non contengono mitocondri, ma
la loro cellula precursore, il proeritroblasto, é criticamente dipendente dalla
funzione mitocondriale fino a che si differenzia in un maturo globulo rosso. La

                                                                                     1
catena respiratoria mitocondriale rappresenta il meccanismo di conservazione
dell'energia rilasciata dal trasporto degli elettroni dai substrati a basso potenziale
redox all'ossigeno molecolare. Essa è formata da una serie di complessi
enzimatici collegati da trasportatori a peso molecolare relativamente basso,
Coenzima Q (CoQ) e citocromo c. La visione più accreditata della catena
respiratoria fini a qualche anno fa considerava i complessi come entità disperse
nel doppio strato lipidico collegati funzionalmente dalla diffusione dei
componenti a basso peso molecolare. Recenti studi strutturali e cinetici
favoriscono invece una organizzazione almeno in parte in stato solido, sotto
forma di supercomplessi con "channeling" diretto degli elettroni tra tutti i
costituenti senza distinzione tra fissi e mobili. L'organizzazione in
supercomplessi non sembra rigida ma può essere modulata dalla componente
lipidica, sia quantitativa sia qualitativa. In particolare la perossidazione dei
lipidi sembra disaggregare i supercomplessi. La conservazione dell'energia è
assicurata dal corretto funzionamento dei Complessi I (NADH-CoQ reduttasi),
III (ubichinolo citocromo c reduttasi) e IV (citocromo c ossidasi); in aggiunta
altri enzimi (Complesso II o succinato CoQ reduttasi, glicerofosfato
deidrogenasi, ETF deidrogenasi, diidroorotato deidrogenasi) convogliano
elettroni al CoQ da substrati a potenziale redox superiore al NAD, saltando così
il Complesso I. Dei Complessi III e IV conosciamo la struttura atomica
cristallografica, mentre la struttura del Complesso I è ancora poco nota. Ognuno
dei Complessi che conservano energia ha numerose subunità, alcune delle quali
codificate dal DNA mitocondriale. L'energia sviluppata dalla reazione redox
viene conservata sotto forma di gradiente protonico transmembrana, ottenuto
mediante traslocazione attiva di protoni dalla matrice allo spazio tra le due
membrane. I meccanismi di traslocazione protonica sono legati direttamente o
indirettamente alla funzione redox degli enzimi: meglio conosciuta è la funzione
del Complesso III, attraverso il Q-cycle di Mitchell basato sulla vettorialità del
CoQ come trasportatore di idrogeno (elettroni più protoni); sono stati proposti

                                                                                    2
meccanismi dettagliati anche per il Complesso IV, mentre per il Complesso I la
scarsa conoscenza strutturale rende il meccanismo ancora sostanzialmente
ignoto. Il gradiente protonico rappresenta la base per la sintesi di ATP da parte
dell'ATP sintasi. Un elevato gradiente protonico non utilizzato per la sintesi di
ATP rallenta il flusso egli elettroni (controllo respiratorio). Il controllo
respiratorio è rilasciato anche dal trasporto di ioni, come il Calcio, o
dall'aggiunta di sostanze capaci di collassare il gradiente cortocircuitando i
protoni attraverso la membrana (disaccoppianti). Conosciamo oggi anche delle
proteine disaccoppianti (UCP) che agiscono presumibilmente da canali
protonici. Un'azione collaterale della catena respiratoria è la produzione di
anione superossido e da esso di altre specie reattive dell'ossigeno (ROS): i
maggiori produttori di superossido sono il Complesso I (che lo rilascia nella
matrice) e il III (che lo rilascia nello spazio tra le due membrane). La
produzione aumenta ad alto potenziale di membrana, quando il flusso di
elettroni è lento e la catena più ridotta: in tali condizioni il superossido è
soprattutto formato dal trasporto inverso di elettroni da succinato a NAD. Un
parziale disaccoppiamento, fisiologicamente ottenuto attraverso le UCP,
diminuisce la tendenza degli elettroni a ridurre l'ossigeno. Qualsiasi danno alla
catena respiratoria è potenzialmente in grado di rallentare il flusso di elettroni a
monte facilitando la produzione di superossido, come nelle citopatie
mitocondriali, nella senescenza e in altre condizioni patologiche. Il mitocondrio
è equipaggiato a far fronte ai ROS attraverso sistemi di difesa tra cui enzimi
come la superossido dismutasi (Mn), la glutatione perossidasi coadiuvata da
glutatione redattasi e NADH NADP transidrogenasi. Analoghi sistemi esistono
in sede extramitocondriale con la differenza dell'importanza dello shunt dei
pentosi anziché della transidrogenazione per mantenere il glutatione allo stato
ridotto. Tenuto conto che più del 90% dell’energia utilizzata dal nostro
organismo viene prodotta nei mitocondri se ne ricava che quando questa energia

                                                                                  3
viene a mancare per un alterato funzionamento mitocondriale, la vita della
cellula stessa e, conseguentemente, quella del nostro organismo sono a rischio.

      Fig.1 mtDNA

      Dal punto di vista genetico, la catena respiratoria ha caratteristiche uniche
in quanto è formata da proteine codificate da due diversi sistemi genici, il
genoma nucleare (proveniente da entrambi i genitori) ed il genoma
mitocondriale (proveniente dalla madre). Come conseguenza di questo duplice
contributo genetico, i difetti della fosforilazione ossidativa possono essere
dovuti a mutazioni in geni mitocondriali o a mutazioni in geni nucleari. In
patologia umana, le mutazioni del mtDNA sono associate ad un ampio spettro di
malattie, tra cui miopatie, encefalopatie e cardiomiopatie, in aggiunta ad altre
più o meno specifiche situazioni a carico di tessuti caratterizzati da elevate
richieste energetiche, quali il sistema endocrino, la retina, il rene e l'apparato
gastrointestinale. Più di cento differenti riarrangiamenti del DNA mitocondriale

                                                                                  4
(delezioni e duplicazioni) e più di cinquanta mutazioni puntiformi patogenetiche
sono state associate ad un'elevata varietà di malattie mitocondriali sia
multisistemiche che tessuto-specifiche, in particolare con il fenotipo di
encefalomiopatia mitocondriale. In ogni caso, l'effetto patogenetico di queste
mutazioni è dovuto a una ridotta sintesi - per difetto in specifici RNA
messaggeri o in uno o più classi di RNA transfer - delle subunità proteiche degli
enzimi della catena respiratoria codificate dal     mtDNA. In contrasto con i
notevoli progressi nella comprensione delle cause delle malattie mitocondriali, i
meccanismi patogenetici che determinano la disfunzione di organi/tessuti
possono essere solo parzialmente spiegati dalle caratteristiche della genetica
mitocondriale e sono ancora poco chiari. La cosiddetta eteroplasmia tessutale
(wild type) e l'effetto soglia sono stati chiamati in causa per spiegare l'estrema
variabilità delle manifestazioni cliniche associate a mutazioni del mtDNA.
Molte mutazioni ereditarie consistono nella sostituzione di una singola coppia di
basi in un gene che codifica per una certa proteina: quest’ultima finisce per
avere un amminoacido scorretto in una data posizione. Un gran numero di
sostituzioni patologiche di basi del DNA mitocondriale altera le molecole di
RNA che fanno parte del meccanismo utilizzato dai mitocondri per costruire le
proteine; queste mutazioni possono così interferire simultaneamente con la
sintesi di molte differenti proteine mitocondriali e possono ridurre
sostanzialmente la produzione di ATP.

      Consulenza genetica
      Nel caso in cui un soggetto è individuata una mutazione causativa, sia
essa a carico del mtDNA o del nDNA, il successivo screening famigliare può
essere seguito attraverso una semplice analisi del sangue. Questo è importante
soprattutto per le mutazioni del mtDNA, che sono frequentemente associate ad
una notevole variabilità della sintomatologia all’interno della stessa famiglia.
Acconto a soggetti affetti da sintomi gravi, vi sono spesso parenti materni che

                                                                                5
hanno percentuali basse o molto basse di mutazioni e che, manifestano solo
sintomi minori o asintomatici. La prognosi in questi individui è difficilmente
formulabile a causa della variabile distribuzione della mutazione nei diversi
tessuti, del possibile incremento della mutazione con il tempo e dell’influenza di
fattori non mitocondriali. La consulenza genetica delle malattie mitocondriali è
particolarmente difficile, e va effettuata in ambiente specialistico.
      Si possono in ogni modo dare alcune linee-guida per orientarsi:
                •I   maschi portatori di mutazioni del mtDNA non trasmettono la
                      malattia ai figli.
                • Analogamente,     e tranne alcuni casi assolutamente eccezionali,
                      le donne con Oftalmoplegia Esterna Progressiva (PEO) o
                      con Sindrome di Kearns – Sayre in cui sia documentata una
                      delazione del DNA mitocondriale, non trasmettono la
                      malattia ai figli.
                • Nelle    famiglie in cui sia documentata una mutazione
                      puntiforme del mtDNA, tutte le donne in linea materna
                      devono essere considerate      a rischio di avere un figlio
                      affetto.
                • Nelle   famiglie portatrici di mutazioni patogene di un gene
                      nucleare, il rischio di ricorrenza segue quello delle leggi di
                      Mendel, e varia in modo prevedibile a seconda che si tratta
                      di un carattere dominante, recessivo, o legato al cromosoma
                      X

                                                                                  6
SINDROME METABOLICA PROFILI GENOMICI
                            MITOCONDRIALI

      Un lavoro pubblicato su Science (11) ha indicato che alla base della
sindrome metabolica è presente un singola mutazione del tRNA mitocondriale
pure responsabile di ipomagnesemia          in associazione ad ipertensione e
dislipidemia. Il gruppo di Yale ha individuato la mutazione T4291C, che
consiste nella sostituzione di un uracile con una citosina, per la prima volta nel
genoma mitocondriale di una donna bianca che presentava un concentrazione di
magnesio troppo bassa e, contemporaneamente, ipercolesterolemia, resistenza
all’insulina e obesità. Queste disfunzioni ricorrevano nella famiglia della donna.
Così gli scienziati hanno eseguito lo screening del genoma mitocondriale di 142
componenti della famiglia. È risultato che tra i componenti analizzati 48 di loro
avevano un’antenata in comune e presentavano la stessa mutazione nel tRNA.
In particolare 38 di loro presentavano uno o più caratteri distintivi della
sindrome metabolica, 26 almeno due, i restanti 7 li presentavano tutti. Questa
mutazione dovrebbe avere un ruolo cruciale. Si è riscontrato, infatti, che quella
è una delle posizioni più conservate nei genomi partendo dagli archebatteri fino
ai mitocondri passando per i cloroplasti. Perciò la mutazione potrebbe davvero
cambiare degli equilibri che si sono assestati in milioni di anni”. In più ciò

                                                                                7
spiegherebbe       l’associazione   tra   ipercolersterolemia   e   ipertensione.
L’importanza della ricerca della mutazione T4291C ha spinto diversi gruppi di
ricerca alla individuazione del polimorfismo in diverse popolazioni con risultati
fin ora poco incoraggianti. Uno studio Ungherese ha valutato 164 pz. adulti e
119 pz pediatrici senza trovare alcuna variante interessante il tRNA
mitocondriale e l’indagine molecolare ha sottolineato, quanto estremamente rara
sia questa mutazione in pz con SM ungheresi. (13) Una seconda mutazione
T16189C del mtDNA associata a SM è stata descritta in soggetti Cinesi nel
giugno 2005. (12) Questa una mutazione del DNA mit vede la transizione di
una timidina con una citosina al nucleotide 16189 già conosciuta per essere
associata con resistenza all’insulina e diabete mellito tipo 2. La mutazione
T16189C cade in una regione ipervariabile non codificante ed il
sequenziamento di questa regione ha evidenziato che la transizione inserisce
una coda di policitosine che producono differenti polimorfismi in eteroplasia
nella regione regolatoria D-loop. L’origine mitocondriale di questo disordine è
di particolare interesse anche alla luce della recente evidenza dell’esistenza di
una disfunzione mitocondriale nel diabete mellito tipo 2 e nell’insulino-
resisatenza, altre componenti della SM, e del fatto che nel corso
dell’invecchiamento è nota la perdita o la compromissione della funzione
mitocondriale.

                                                                               8
RICERCA DELLA MUTAZIONE OMEOPLASTICA T4291C A
                 LIVELLO DEL tRNAile MITOCONDRIALE

                                      SCREENING

                 C

Fig.2. Mutazione T4291C a livello del tRNAile

Nel Dicembre 2005 sono            stati resi noti i dati relativi alla ricerca della
mutazione T4291C effettuata presso l’Istituto di Biochimica Clinica
dell’Università di Bari.     Si sono prese in considerazione 41 famiglie, reclutati
per lo screening mediante PCR-RFLP al fine di individuare la singola
mutazione T4291C a livello del tRNAile responsabile di SM e ipomagnesemia
che rispondevano alle indicazioni stabilite dalla ATPIII.

Si è passato in seguito ad un’ ulteriore selezione dei soggetti che presentavano
la linea di trasmissione ereditaria materna della SM. e si è estesa l’indagine a
tutti i componenti del nucleo familiare di I e II grado per via verticale ed
orizzontale. Si sono così individuati 47 pazienti che mostravano una chiara
relazione tra familiarità materno- lineare e SM.

                                                                                  9
Patients                          47
        Male/Female                     18 ± 29
        Age                            58.6 ± 9.5
        Weight                        84.1 ± 18.4
        Body Mass Index                 31.6 ± 5
        Glycaemia (mg%)               132.9 ±57.2
        Tryglicerides (mg%)           165.2 ± 90.1
        Total Cholesterol (mg%)       215.8 ±36.7
        HDL Cholesterol (mg%)         39.3 ± 10.6
        LDL Cholesterol (mg%)         144.6 ± 32.6

        WAIST CIRCUMFERENCE               43
        HYPERTENSION                      41
        REDUCED HDL                       35
        HYPERTRIGLYCERIDEMIA              19
        HYPERGLYCAEMIA                    30
        N. PATIENTS WITH 5 CRITERIA        8
        N. PATIENTS WITH 4 CRITERIA       13
        N. PATIENTS WITH 3 CRITERIA       21

Tab.1

                                                     10
L’analisi molecolare dei probandi per l’individuazione della mutazione T4291C
a livello del tRNAile mitocondriale, ha dato risultati negativi.     Tuttavia si è
individuatata una variante polimorfica non descritta in letteratura relativa alla
regione parziale D-LOOP, RNA12s,                  in una famiglia (FAMIGLIA 11)
composta da 5 (cinque) elementi dei quali 3 (tre) affetti da SM e 2 (due)
soggetti non affetti e definiti controlli sani.

Fig.2    Regione mtDNA: regione parziale D-LOOP, rRNA12s, tRNA phe ?

Dalla valutazione laboratoristica di differenti parametri di laboratorio intesi a
definire pazienti sospetti di SM si constatavano differenti caratteristiche nei
componenti della famiglia in esame.

I quattro componenti, rispettivamente di prima e seconda generazione, della
famiglia allo studio presentavano uno stato infiammatorio (aumento della CPR)
in assenza di insulino resistenza (HOMA nella norma).

Di questi il probando (femmina di 56 aa – II generazione ) pur non
manifestando insulino resistenza (HOMA e insulinemia nella norma) in
presenza di un aumento della PRC, presentava un’ alterata glicemia a digiuno -
HGT 101 mg/dl ( v.n. > 100 mg/dl ) - che ha dato esito negli anni ad una
retinopatia diabetica, mentre i controlli sani, figlio di 20 anni e figlia di 26 anni
III generazione, non prognostici di SM (secondo la definizione ATPIII), se ne

                                                                                  11
differenziavano per l’assenza dello stato infiammatorio (PRC nella norma) e per
essere insulino resistenti.

I controlli sani si caratterizzano invece per essere insulinoresistenti e per ciò a
rischio di sviluppare una SM conclamata, in particolare la figlia ha sviluppato
un ovaio policistico di cui è nota l'associazione con la SM e il figlio mostrava
una c.v. ai limiti della norma. (93cm)

Nessuno dei componenti la famiglia 11 presentava ipomagnesemia Lo stato
infiammatorio rimane al momento l'unico meccanismo patogenetico rilevato
nei componenti affetti da SM.

      .
                                                                    I

                                                                    II

                56

SM PCR
                                                                    III

      SANO HOMA                                    2222222222
                                26                 2222o22222
                                                   2222

                                                                                12
CONCLUSIONI

Al momento, sembra ragionevole ipotizzare che nei soggetti con differente
pattern di restrizione del mtDNA nello sviluppo della SM non sia coinvolta solo
l’insulinoresistenza ma siano da chiamare in causa anche la dieta e una
componente     genetica   in   grado   di   regolare   l’espressione dei   fattori
dell’infiammazione quali ad esempio TNFα , IL6, PAI-1 ed altri.
Pertento la definizione eziopatogenetica della SM è quella di una condizione di
infiammazione cronica, documentata da un aumento della PCR, in grado di
indurre rischi di natura cardiovascolare e di diabete tipo2, anche in assenza di
insulinoresistenza.

                                                                               13
BIBLIOGRAFIA

1) Alberti KG, Zimmet, P. Definition, diagnosis and classification of diabetes mellitus and
    metabolic syndrome; 1998.
2) Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults:
    findings from the third National Health and Nutrition Examination Survey. JAMA 2002;
    287: 356-9.
3) Meigs JB. Epidemiology of the metabolic syndrome, 2002. Am J Manag Care 2002; 8 (11
    suppl): S283-92.
4) Mokdad AH, Bowman BA, Ford ES, et al. The continuing epidemics of obesity and
    diabetes in the United States. JAMA 2001; 286: 1195-200.
5) O’Deak. Obesity and diabetes in the “land of milk and honey”.Diabetes metab. Rev., 1992;
    8: 373-388.
6) Jenkins d. et al, Glicemic index: overview of implication in health and disease. Am. J. Clin.
    Nutr., 2002; 76, suppl. 2865-95.
7) Paffenbanger RS Jr, Lee IM. Physical activity and coronary heart disease in men: the
    Harvard Alumni Health Study. Circulation 2000; 102: 975-80..
8) Wilhelmesen. The cardiac endocrine aldosterone system, 1988.
9) Jacobs EJ, Thus MJ, Apicella LF. Cigar smoking and dealth from coronary heart disease in
    a prospective study of US men. Arch Intern Med 1999; 159: 2413-8.
10) Vague J. Sexual differentiation, a factor affecting the forms of obesity. Press Med, 1947;
    30: 339-40.
11) Funahashi T, Nakamura T, Shimomura I et al. Role of adipocytokines on the pathogenesis
    of atherosclerosis in visceral obesità. Intern Med, 1999; 38: 202-6.
12) Wake D. J. et al. 11-beta-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic
    syndrome. Mol Cell Endocrinol., 2004; 27: 45-54.
13) G. Iacobellis, et al. Prevalence of uncomplicated obesity in an italian obese population,
    2005; 13: 1116-1122.
14) Pi-Sunyer. Health implication of obesity, 1991; 53:1595s-603s.
15) Hanis. Cardiovascular risk factors in Mexican-American and non.Hispanic white children,
    1997; 96: 418-23.
16) Owerweight, obesity and health risk. National Task Force on the prevention and treatment
    of Obesity. Arch Intern Med 2000; 160: 898-904.
17) Shirai K. Obesity as the score of the metabolic syndrome and the management of coronary
    heart disease. Curr Med Opin 2004; 20: 295-304.
18) Hubert, H.B. et al. Obesity as an independent risk factor for cardiovascular disease,
    Circulation, 1983; 67: 968-977.
19) Albrink MJ, Meigs JW. The relantionship between serum triglycerides and skinfold
    thickness in obese subjects. Ann NY Acad, 1995; 131: 673-83.
20) Avogaro P, Crepaldi G, Enzi G, Tiengo A. Associazione di iperlipidemia, diabete mellito e
    obesità di medio grado. Acta Diabetetol bat, 1967; 4: 36-41.
21) Reaven GM. Banting lectur 1988. Role of insulin resistence in human disease. Diabetes,
    1998; 37: 1595-607.
22) DeFronzo RA, Ferrannini E. The pathogenesis of non-insulin-dependent diabetes: an
    update. Medicine (Baltimore) 1982; 61:125-40.
23) DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion
    responsible for NIDDM. Diabetes 1988;37:667-87.
24) Bajaj M, Defronzo RA. Metabolic and molecular basis of insulin resistance. J Nucl Cardiol
    2003;10:311-23.
25) Alberti KGMM, Zimmet PZ for the WHO consultation. Definition, diagnosis and
    classification of diabetes mellitus and its complications. Diab Med 1998; 15: 539-43.
26) Turner NC, Clapham JC. Insulin resistance, impaired glucose tolerance and no insulin
    dependent diabetes, pathologic mechanism and treatment: current status and therapeutic
    possibilies. Prog Drug Res, 1998; 51: 36-94.
27) Pyorala. Prevention of cardiovascular disease in diabetes mellitus, 1997.
28) J. Stamler, D. Wentworth, J.D. Neaton et al. Relantionship between serum cholesterol and
    risk of premature death from coronary heart disease, JAMA, 1986; 256: 2823-2828.
29) Chen Z, Peto R, Coilins R et al. Serum cholesterol concentration and coronary heart disease
    in population with low cholesterol concentrations. BMJ, 1991; 303: 276-282.
30) Wilson PW, Kannel WB, Silbershatz H, D’Agostino RB. Clustering of metabolic factors
    and coronary heatr disease. Arch Intern Med, 1999; 159: 1104-1109.
31) Patsch JR, Miesenbock G, Hopferwieser T, et al. Relation of triglyceride metabolism and
    coronary artery disease. Studies in the postprandial state. Arterioscler Thromb
    1992;12:1336-45.
32) Eberly LE, Stamler J, Neaton JD; Multiple Risk Factor Intervention Trial Research Group.
    Relation of triglyceride levels, fasting and nonfasting, to fatal and nonfatal coronary heart
    disease. Arch Intern Med 2003;163:1077-83.
33) Von Eckardstein A, Schulte H, Assmann G. Lipoprotein (a) further increases the risk of
    coronary events in men with high global cardiovascular risk. J AM Coll Cardiol 2001; 37:
    434-439.
34) Adamczak M, Wiecek A, Funahashi T, Chudek J, Kokot F, Matsuzawa Y. Decreased
    plasma adiponectin concentration in patients with essential hypertension. Am J Hypertens
    2003; 16:72-5.
35) Ouchi N, Ohishi M, Kihara S et al. Association of hypoadiponectinemia with impaired
    vasoreactivity. Hypertension 2003; 42:231-4.
36) Smith SC Jr, Blair SN, Bonow RO et al. AHA/ACC guidelines for preventing heart attack
    and death in patients with atherosclerotic cardiovascular disease. J Am Coll Cardiol 2001;
    38: 1581-1583.
37) Campbell B, Bradrick T, Flatman R, Kanowki D. Limited clinical utilitu of highsensitivity
    plasm-C-reactive protein assays. Ann Clin Biochem 2002; 39: 85-88.
38) La proteina C reattiva; relazioni con la mortalità totale, la mortalità cardiovascolare e
    ifattori di rischio di malattie cardiovascolari negli uomini. European Heart Journal, 2000;
    19: 1584-1590..
39) Hulthe J, Bokemark L, Wikstrand J, Fagerberg B. The Metabolic Syndrome, LDL particle
    size, and atherosclerosis: the Atherosclerosis and Insulin Resistance (AIR) study.
    Arterioscler Thromb Vasc Biol 2000;20:2140-7.
40) Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation 1979;60:47385.
41) De Caterina R. Endothelial dysfunctions: common denominators in vascular disease. Curr
    Opin Clin Nutr Metab Care, 2000; 3: 453-467.
42) Després J.P. From CVD risk to cardiometabolic risk, 2006.
43) Barter P.J. Closing remarks: from metabolic syndrome to cardiometabolic risk: the common
    ground, 2006.
44) www.chd-taskforce.com
45) www.cuore.iss.it
Puoi anche leggere