SMART GRIDS Dalle Smart Grids alle Smart Cities - i sistemi elettrici del futuro - Levi Cases
←
→
Trascrizione del contenuto della pagina
Se il tuo browser non visualizza correttamente la pagina, ti preghiamo di leggere il contenuto della pagina quaggiù
SMART GRIDS i sistemi elettrici del futuro Dalle Smart Grids alle Smart Cities Carlo Alberto Nucci DEI – Guglielmo Marconi – Università di Bologna carloalberto.nucci@unibo.it Lunedì 28 ottobre 2015 Aula Magna, Palazzo del Bo Padova
1 Smart City
Smart City: definizione?
Smart City: definizione?
Smart City: definizione?
1 Bologna Smart City: strategies overview 2 3 4 5 6 Smart Energy Smart Smart Smart People Smart Smart Living Mobility environment Government Renovation of Inclusiveness Data the built Pedestrian Safety Digital management and bicycle Agenda Smart devices mobility environment Waste Business management Cloud Innovation Intermodality &Crowd Smart grids Water System e.services Social Innovation Last mile Management Smart lighting logistic Cultural Heritage promotion
EU Smart Cities Stakeholder Platform: 11 priority areas 3 ‘vertical’ domains 8 ‘horizontal’ enabling themes
2 Smart Grid
Potenza elettrica installata in Italia Potenza efficiente lorda degli impianti elettrici di generazione in Italia al 31.12.14
Smart Grid Anche la rete elettrica tradizionale è smart
Intentional islanding/reconnection – PMU Case description 80 MW power plant: two aeroderivative gas turbine (GT) units and a steam turbine unit (ST) in combined cycle; PP connected to a 132 kV substation feeding a urban medium voltage (MV) distribution network; PP substation is linked, by means of a cable line, to the 132 kV substation that feeds 15 feeders of the local medium voltage (15 kV) distribution network and provides also the connection with the external transmission network throughout circuit breaker BR1.
Proc. UPEC, Padua, Italy, Sept 2008 Intentional islanding/reconnection – PMU Islanding maneuver PP is equipped with a PMS that: - Operates BR1 for the disconnection of the network from the external grid; - Communicates the “Load Droop Anticipator command” to the ST control system in case of islanding maneuvers accomplished at rather large power exported levels to the transmission network; - Disconnects MV feeders following a predefined priority list in order to guarantee the load balance; - selects the operation control mode of the two gas turbines (master and slave) for the frequency regulation of the network in islanded conditions; GT1 GT2 Islanding capabilities tested with EMTP-RV. ST
Intentional islanding/reconnection – PMU Islanding of GT1: Distribution network voltage phasors angles differences during the 3 2 1
Intentional islanding/reconnection – PMU Reconnection maneuver A feedback of the PMU measurements was given to the PP operator. The synchro-check relay and the synchronizing PMS action permitted the smooth reconnection maneuver. While the PMS controls the power plant units in order to allow a reliable reconnection maneuvers of the network to the external grid.
Intentional islanding/reconnection – PMU Reconnection of GT1: Voltage phasors angle differences 200 0.21 Angle difference between positive-sequence Angle difference between positive-sequence components of PMU2 and PMU3 phasors (°) components of PMU1 and PMU2 phasors (°) PMU2-PMU3 0 Identification of PMU1-PMU2 -200 0.2 the correct phase -400 difference between 0.19 -600 islanded and -800 external network to 0.18 -1000 trigger the -1200 0.17 reconnection -1400 maneuver. -1600 0.16 0 10 20 30 40 50 60 Time (s)
Intentional islanding/reconnection – PMU PMU measured frequency transient 50.15 PMU1 Monitoring of the frequency difference PMU2 50.1 (positive) between the PMU3 Frequency (Hz) islanded network 50.05 (PMU1 and PMU2) and the external 50 network (PMU3). 49.95 0 10 20 30 40 50 60 Time (s)
3 Smart Grid per Smart Cities
Smart City: definizione? The Smart Cities Council is a for-profit, Partner-led association for the advancement of the smart city business sector. It promotes smart cities in general and our Partners in particular. Allied Telesis Alstom Grid Bechtel Cisco Cubic Transportation Systems - Enel GE IBM Itron, Inc. MasterCard Mercedes-Benz Microsoft Ooredoo Qualcomm S&C Electric Co. Schneider Electric
Partendo dall’Utenza integrata [da R. Caldon]
Si dovrà arrivare ad una rete completamente integrata [da R. Caldon]
http://esmig.eu/page/enabling-smarter-energy-world
http://iperbole2020.tumblr.com/smartcity
La Piattaforma Bologna Smart City “Le smart city sono sistemi intelligenti e sostenibili, aree urbane In sintonia con che pianificano coerentemente l’integrazione delle diverse Regione caratteristiche identitarie del proprio territorio - culturali, economiche, produttive, ambientali CNR,- inENEA, Lepida, un’ottica imprese di innovazione. locali estrada Bologna ha scelto di percorrere questa nazionali,.. nel solco della Piano propria tradizione civica, attraverso Strategico un’alleanza tra mondo della Metropolitano ricerca ed Università, imprese e pubblica amministrazione per sviluppare soluzioni utili ad affrontare problematiche urbane e sociali, mettendo le tecnologie al Per l’Università servizio di Bologna delle persone” pieno coinvolgimento del Gruppo di Lavoro ‘Smart City’ dell’Alma Mater Studiorum 24
La Piattaforma Bologna Smart City 30 luglio 2012 - http://www.unibo.it/it/ricerca/progetti-e-iniziative/bologna-smart-city In sintonia con Regione CNR, ENEA, Lepida, imprese locali e nazionali,.. Piano Strategico Metropolitano L’impegno dell’Alma Mater all’interno della Piattaforma si avvale del contributo del Gruppo di lavoro “Bologna Smart City” coordinato da C.A. Nucci http://www.magazine.unibo.it/archivio/2012/bologna_smart_city http://iperbole2020.tumblr.com/smartcity http://www.aster.it/tiki-read_article.php?articleId=717 25
Prof. Danilo Montesi Oplon MIUR Smart cities and social innovation Art 1: …. The Ministry of Education, University and Research (MIUR henceforth), in line with the European guidelines of "Horizon 2020," the guidelines the European Digital Agenda, the National Plan for E-Government, actions underway in the framework of the Digital Agenda Italian, attributes to interventions in the field of Smart Cities and Communities the value of a strategic priority for the entire national research policy and innovation. 14.5M€ Line of intervention: ageing of the society Partners: - 4 large companies - 4 SME - 5 research institutions ** Formal commitment from: * - - Ministry of Health regional governments and health agencies (4), * - healthcare local institution (4) - municipalities of major impacted towns (3) * - associatations (GPs, municipalities & healthcare institutions) OPLON: costo 773.558,99 (contributo 618.847,19) Agenzia sanitaria e sociale regionale 26
Proff. Armando Brath e Sandro Artina Watertech WATERTECH: costo 620.000 (contributo 496.000) Prelocalizzazione Progetto PERDITE IDRICHE SMART WATERTECH Monitoraggio ACQUE SMART WATER METERING PARASSITE (modelli di previsione domanda e tariffazione) Sistemi di CONTROLLO ed ATTUAZIONE in TEMPO REALE (pressione, qualità delle acque) Monitoraggio SCARICATORI DI PIENA Rilevamento inquinanti mediante IMMAGINI SATELLITARI
RIGERS – RIGENERAZIONE DELLA CITTÀ: EDIFICI E RETI INTELLIGENTI ICIE - CPL - SACMI - CMC - SATA - CNR ICT - UNIBO (DA - DEI – DICAM) Prof. Andrea Boeri Decreto Direttoriale 13 febbraio 2014 n.428 - BANDO SMART CITIES NAZIONALE Ambito di interesse primario: Ambito di interesse secondario: ARCHITETTURA SOSTENIBILE E MATERIALI SICUREZZA DEL TERRITORIO Rigers Ambito di interesse secondario: SMART GRIDS RIGERS: costo 799.096,24 (contributo 639.276,99)
RIQUALIFICAZIONE, RIGENERAZIONE E VALORIZZAZIONE DEGLI INSEDIAMENTI DI EDILIZIA SOCIALE AD ALTA INTENSITÀ ABITATIVA NELLE PERIFERIE URBANE NELLA SECONDA METÀ DEL ‘900 – PRIN 2008 DA UNIBO IPOTESI RIQUALIFICAZIONE DELL’EDIFICIO VIRGOLONE: QUARTIERE PILASTRO BOLOGNA FABBISOGNO ENERGETICO ATTUALE 118,54 kWh/m2y RIDUZIONE DEL CONSUMO DI ENERGIA 24,86 kWh/m2y UNIVERSITÀ DI BOLOGNA – DIPARTIMENTO DI ARCHITETTURA – A. Boeri – E. Antonini – D. Longo – R. Roversi – G. Chieregato CASO STUDIO: COMPLESSO RESIDENZIALE “PILASTRO” – BOLOGNA
E2SG Energy to Smart Grid T4.11 Demonstration of storage optimization by exploiting electric vehicles D4.11 Simulator of storage optimizing policies Luca Bedogni (IUNET-luca.bedogni4@unibo.it), Luciano Bononi (IUNET- luciano.bononi@unibo.it), Alberto Borghetti (IUNET – alberto.borghetti@unibo.it), Riccardo Bottura (IUNET - riccardo.bottura2@unibo.it), Alfredo D’Elia (IUNET- alfredo.delia4@unibo.it), Federico Montori (IUNET-federico.montori2@unibo.it), Carlo Alberto Nucci (IUNET – carloalberto.nucci@unibo.it), Elisa Pitti (HERA- Elisa.Pitti@gruppohera.it), Tullio Salmon Cinotti (IUNET-tullio.salmoncinotti@unibo.it) Final Review E2SG October 21/22 2015, Berlin E2SG INTERNAL/CONFIDENTIAL Copyright @ E2SG Consortium www.e2sg-project.eu
T4.11 – Simulator of storage policies of EVs Overview WP3 Grid Topology & Control WP4 Demonstrators 3.4 Advanced storage management policies 4.11 Demonstration of storage optimization by exploiting electric vehicles Objectives: - Development of a co-simulation platform that integrates a mobility simulator of the electric vehicles and their charging requests with a dynamic simulator of the power distribution network. - Implementation and tests of control functions able to limit the impact of electric vehicle charging on power distribution. Deliverable (M36 available) E2SG INTERNAL/CONFIDENTIAL Copyright @ E2SG Consortium www.e2sg-project.eu p. 31
T4.11 – Simulator of storage policies of EVs Architecture of the co-simulation environment E2SG INTERNAL/CONFIDENTIAL Copyright @ E2SG Consortium www.e2sg-project.eu p. 32
Mobility simulator: OMNET++ - SUMO - Veins - Openstreetmap Traffic Simulation Framework Simulator for analysis of traffic including EV and EVSE entities in realistic scenarios (including support for ext. services and apps). Based on Omnet++, SUMO, Veins and Openstreetmap Accurate modeling of city scenarios and multiple eMobility entities Modeling and control of traffic (realistic data vs. model assumptions) Modeling EV and EVSE parameters, their distribution, use and location Integrated with Storage Information Broker (SIB)-based service platform for integration support of external apps and services E2SG INTERNAL/CONFIDENTIAL Copyright @ E2SG Consortium www.e2sg-project.eu p. 33
Power Distribution simulator: EMTP-rv Model of the aggregated unbalanced loads (constant impedance / current / power) that includes the EVSE profiles: the amplitude of a triplet of current sources is controlled by a feed-back regulator in order to inject or absorb the requested value per-phase of active and reactive power. PHASE 1 PHASE 2 PHASE 3 P Q E2SG INTERNAL/CONFIDENTIAL Copyright @ E2SG Consortium www.e2sg-project.eu p. 34
Scheme for the interface between the model of urban traffic and the power distribution system simulator Model of the electric power Model of the urban traffic distribution system ID of active EV charging systems and power Initial occupation of EV Initial power flow charging systems Transient 3ph simulation Traffic simulation (Δt=1ms) ID of active EV charging (Δt=100ms) systems and maximum Model of nodal aggregated power profile Start and end of charging of (1ph and 3ph) EV charging individual EV at a specific systems charging station Check of network constrains by using IEDs Update of charging profile information Limitation of the power for each specific active/idle and duration due to electric EV charging system Networked control EV network limitations charging systems Model of the communication network
Synchronization between the model of urban traffic and the power distribution system simulator Windows Linux Linux EMTP-rv OMNET++ & SUMO Socket Socket Reservation event Load change SIB EVSE plug (Storage Network operating Information) EVSE charging condition + WS EVSE profile synchronizer EVSE profile load change EVSE unplug *EVSE: electric vehicles supply equipment e.g.: OPNET, External SW 1 External SW 2 External SW n CityService, … Smartphone App, …
Description of test case SB: MV/LV Substation equipped with a 15 kV/ 400 V transformer every that feeds the LV distribution lines. Locations of EVSEs in Bologna 10 EVSEs at each location. SUMO generates a new car every 2 s. Top view of the map of Bologna with the indication of parking lots with EVSE clusters (orange bullets), HV/MV substations (blue rectangles), and the two 15kV feeders from substation SB_A that connects the EVSE clusters denoted as EVSE_1, EVSE_2, EVSE_3, and EVSE_4 MV line HV/MV SB
Test case SB: MV/LV Substation equipped with a 15 kV/ 400 V transformer every that feeds the LV distribution lines. Present locations of EVSEs in Bologna 10 EVSEs at each location. SUMO generates a new car every 2 s. Top view of the map of Bologna with the indication of parking lots with EVSE clusters (red round), HV/MV substations (blue rectangles), and the two 15kV feeders from substation SB_A that connects the EVSE clusters denoted as EVSE_1, EVSE_2, EVSE_3, and EVSE_4 MV line HV/MV SB
Multi agent system for the distributed control of charging stations Hypotheses: • One agent (i.e. a control system connected to the shared communication network) to each MV/LV transformer that feeds a cluster of EVSE units. • The intelligent electronic devices (IEDs) are installed at the HV/MV substation and at the feeder branches that may reach their maximum current rate during the operation of the distribution network. • One IED at the beginning of each feeder connected to the secondary side of the HV/MV transformer. • This IED measures the current and compares the value with the maximum operation current value of the line. ∆t e + e j ,t −1 Each IED calculates and broadcasts, over ∆prj ,t = Kc ( e j ,t − e j ,t −1 ) + j ,t UMTS cellular network, the variation of a τ I 2 congestion index: i j ,t − i j ,max where e j ,t = Each agent associated to an EVSE cluster i j ,max updates its own congestion index and fixes the maximum power that could be pri ,t = max(1, pri ,t −1 + ∆prj ,t ) absorbed from the MV network: Could you explain the physical ) PEVSEi ,t maximum requested meaning of the constants Kc & PEVSEi ,t = charging power at t1? Why 0.2 and 0.1? pri ,t time t E2SG INTERNAL/CONFIDENTIAL Copyright @ E2SG Consortium www.e2sg-project.eu p. 39
Test case The simulations are repeated for two different BLER values: 1E-5 (case indicated as BLER0) and 0.1 (BLER1), which is a typical reference performance value (e.g. [21]). The same simulations are repeated with the BT (case indicated as BT1) and without the BT (BT0). BT is generated by the UEs associated to the agents and by seven additional UEs and two traffic receivers. The two adopted mobile users application models are characterized by two different gamma distributions of the inter-arrival packet time in s (with parameters 0.0068, 5 and 0.2, 0.5, respectively) and exponential distributions of packet size in bytes (with parameters 41.03 and 62.97, respectively). E2SG INTERNAL/CONFIDENTIAL Copyright @ E2SG Consortium www.e2sg-project.eu p. 40
Current values (in p.u. of the maximum operating Test case results ∆t = 1 s current) measured by the IEDs associated to the first branch of the two considered feeders: 1.014 feeder 1 (EVSE_1, EVSE_2) - BT0 BLER0 Number of charging EVs in each cluster: 1.012 feeder 1 (EVSE_1, EVSE_2) - BT1 BLER1 feeder 2 (EVSE_3, EVSE_4) - BT0 BLER0 1.01 feeder 2 (EVSE_3, EVSE_4) - BT1 BLER1 10 Current (p.u.) N° of Electric Vehicles connected 1.008 9 1.006 8 1.004 EVSE_1 1.002 7 EVSE_2 1 6 EVSE_3 0.998 EVSE_4 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 5 Time (s) 4 Congestion index variations calculated by the IEDs: 3.E-02 3 feeder 1 (EVSE_1, EVSE_2) - BT0 BLER0 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 3.E-02 feeder 1 (EVSE_1, EVSE_2) - BT1 BLER1 Time (s) feeder 2 (EVSE_3, EVSE_4) - BT0 BLER0 2.E-02 feeder 2 (EVSE_3, EVSE_4) - BT1 BLER1 ∆pr 2.E-02 Power requested by each cluster: 1.E-02 460 EVSE_1 - BT0 BLER0 EVSE_1 - BT1 BLER1 EVSE_2 - BT0 BLER0 EVSE_2 - BT1 BLER1 5.E-03 440 EVSE_3 - BT0 BLER0 EVSE_3 - BT1 BLER1 420 EVSE_4 - BT0 BLER0 EVSE_4 - BT1 BLER1 0.E+00 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 Power (kW) 400 Time (s) 380 Congestion indexes calculated by each agent: 360 1.6 1.55 340 1.5 320 1.45 Congestion Index 1.4 300 1.35 280 1.3 EVSE_1 - BT0 BLER0 1.25 EVSE_2 - BT0 BLER0 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 1.2 EVSE_3 - BT0 BLER0 EVSE_4 - BT0 BLER0 Time (s) 1.15 EVSE_1 - BT1 BLER1 1.1 EVSE_2 - BT1 BLER1 1.05 EVSE_3 - BT1 BLER1 EVSE_4 - BT1 BLER1 1 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 Time (s)
Current values (in p.u. of the maximum operating Test case results ∆t = 3 s current) measured by the IEDs associated to the first branch of the two considered feeders: feeder 1 (EVSE_1, EVSE_2) - BT0 BLER0 Number of charging EVs in each cluster: 1.014 feeder 1 (EVSE_1, EVSE_2) - BT1 BLER1 1.012 feeder 2 (EVSE_3, EVSE_4) - BT0 BLER0 10 1.01 N° of Electric Vehicles connected 1.008 feeder 2 (EVSE_3, EVSE_4) - BT1 BLER1 9 1.006 Current (p.u.) 1.004 8 1.002 EVSE_1 1 7 EVSE_2 0.998 6 EVSE_3 0.996 EVSE_4 0.994 5 0.992 0.99 4 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 3 Time (s) 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 Time (s) Congestion index variations calculated by the IEDs: Power requested by each cluster: feeder 1 (EVSE_1, EVSE_2) - BT0 BLER0 8.E-02 feeder 1 (EVSE_1, EVSE_2) - BT1 BLER1 feeder 2 (EVSE_3, EVSE_4) - BT0 BLER0 6.E-02 feeder 2 (EVSE_3, EVSE_4) - BT1 BLER1 ∆pr 4.E-02 2.E-02 0.E+00 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 Time (s) Congestion indexes calculated by each agent: 1.6 Number of Time Time I1 max I2 max Packet delay (ms) BT BLER packets TX I1>1pu (s) I2>1pu (s) (p.u.) (p.u.) mean (stdev) 1.5 RX BT0 378 1.4 BLER0 93 79 1.0109 1.0143 142.6 (10.0) Congestion Index ∆t = 1 s 378 BT1 1.3 EVSE_1 - BT0 BLER0 406 EVSE_2 - BT0 BLER0 BLER1 101 81 1.0113 1.0147 231.3 (189.0) EVSE_3 - BT0 BLER0 ∆t = 1 s 363 1.2 EVSE_4 - BT0 BLER0 BT0 EVSE_1 - BT1 BLER1 149.7 122 BLER0 71 69 1.0107 1.0149 1.1 EVSE_2 - BT1 BLER1 ∆t = 3 s (12.7) 122 EVSE_3 - BT1 BLER1 BT1 EVSE_4 - BT1 BLER1 235.3 128 1 BLER1 81 69 1.0107 1.0149 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 ∆t = 3 s (180.5) 120 Time (s)
Current values (in p.u. of the maximum operating Test case results current) measured by the IEDs associated to the first branch of the two considered feeders: Number of charging EVs in each cluster: 1.02 10 1.015 N° of Electric Vehicles connected 1.01 9 1.005 Current (pu) 1 8 0.995 EVSE_1 0.99 EVSE_2 feeder 1 (EVSE_1, EVSE_2) 0.985 7 EVSE_3 feeder 2 (EVSE_3, EVSE_4) 0.98 EVSE_4 0.975 6 0.97 0.965 5 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 Time (s) Time (s) Congestion index variations calculated by the IEDs: Power requested by each cluster: 5.0E-05 feeder 1 (EVSE_1, EVSE_2) 460 4.5E-05 feeder 2 (EVSE_3, EVSE_4) 440 4.0E-05 3.5E-05 420 3.0E-05 400 2.5E-05 380 ∆pr 2.0E-05 Power (kW) 360 1.5E-05 340 EVSE_1 1.0E-05 5.0E-06 320 EVSE_2 0.0E+00 300 EVSE_3 -5.0E-06 280 EVSE_4 -1.0E-05 260 -1.5E-05 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 240 Time (s) 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 Time (s) Congestion indexes calculated by each agent: 1.3 1.28 feeder 1 (EVSE_1, EVSE_2) 1.26 1.24 feeder 2 (EVSE_3, EVSE_4) 1.22 Congestion Index 1.2 1.18 1.16 1.14 1.12 1.1 1.08 1.06 1.04 1.02 1 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 Time (s)
Analysis of the power flow profiles Ideal congestion management strategy Electric vehicles drivers can behave basically in two different ways - book the EVSE for the minimum time required to get the battery fully recharged assuming to get the maximum power (e.g. a driver in a hurry); - book the EVSE for a long time (some hours) to enable slow recharge when the demand is high (e.g. a driver that parks the car close to his or her workplace). What if EVs are considered as energy sources as well? E2SG INTERNAL/CONFIDENTIAL Copyright @ E2SG Consortium www.e2sg-project.eu p. 44
Analysis of the power flow profiles Ideal congestion management strategy Allocation of power cuts among all the EVSE fed by the same GCP - maximize the number of vehicles fully recharged; - maximize the energy given to each vehicle connected to an EVSE. E2SG INTERNAL/CONFIDENTIAL Copyright @ E2SG Consortium www.e2sg-project.eu p. 45
Analysis of the power flow profiles Power load profile in a typical weekday E2SG INTERNAL/CONFIDENTIAL Copyright @ E2SG Consortium www.e2sg-project.eu p. 46
Analysis of the power flow profiles Analysis of the occupancy of charging stations 60 average power absorbed by each EVSE 50 40 Average power absorbed by each EVSE downstream to IED 1 (in kW) 30 20 around 6 PM 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 number of occupied EVSEs 60 average power absorbed by each EVSE 50 40 Average power absorbed by each EVSE downstream to IED (in kw) 30 1 around 10 AM 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 number of occupied EVSEs E2SG INTERNAL/CONFIDENTIAL Copyright @ E2SG Consortium www.e2sg-project.eu p. 47
Analysis of the power flow profiles Profile of vehicle traffic during the day 8 7 Average number of running vehicles 6 (percentage of the total number) 5 4 3 2 1 0 12:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 AM AM AM AM AM AM AM AM AM AM AM AM PM PM PM PM PM PM PM PM PM PM PM PM hour of the day E2SG INTERNAL/CONFIDENTIAL Copyright @ E2SG Consortium www.e2sg-project.eu p. 48
Analysis of the power flow profiles Portion of a simulation run showing the average power absorbed by the EVSEs downstream to IED 2 and the number of occupied EVSEs 5 50 4 40 of EVSEs (Kw) 3 30 (kW) # EVSE Power Power Number 2 20 1 10 0 0 16:00 16:30 17:00 17:30 Hour Occupied EVSEs Average Power E2SG INTERNAL/CONFIDENTIAL Copyright @ E2SG Consortium www.e2sg-project.eu p. 49
Coinvolgimento internazionale
Puoi anche leggere